Efecto del polvo fino reciclado como fuente de calcio sobre las propiedades frescas y endurecidas del mortero geopolimérico
DOI:
https://doi.org/10.3989/mc.2024.359923Palabras clave:
Cenizas volantes, Polvo fino reciclado, Mortero de geopolímero, Resistencia a la compresión, Absorción de agua, Ataque ácido, Retracción por secadoResumen
Este estudio explora la eficacia del polvo fino reciclado (RFP) derivado de residuos de construcción y demolición como sustituto sostenible del cemento Portland ordinario (OPC) como fuente de calcio (Ca) en morteros de geopolímero. Las propiedades frescas del Mortero Geopolímero (GPM) se evaluaron en términos de asentamiento, tiempo de fraguado inicial-final, mientras que las propiedades endurecidas se evaluaron en términos de resistencia a la compresión (CS), absorción de agua (WA), porosidad, ataque ácido y retracción por secado tanto a temperatura ambiente como con curado a elevada temperatura. Los resultados indican que el RFP funciona bien en todas las mezclas. Sin embargo, la mezcla C10R10 muestra los mejores resultados generales, ya que se observó una resistencia a la compresión un 17% mayor en comparación con la mezcla C20R0, que aumenta hasta un 88% en comparación con la mezcla C0R0. Por tanto, RFP proporciona suficiente contenido de Ca como activador en GPM.
Descargas
Citas
Gagg CR. 2014. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 40:114-40. https://doi.org/10.1016/j.engfailanal.2014.02.004
Naqi A, Jang JG. 2019. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review. Sustain. 11(2):537. https://doi.org/10.3390/su11020537
Davidovits J. 2017. Geopolymers: Ceramic-like inorganic polymers. J. Ceram. Sci. Technol. 8(3):335-50.
Amran M, Debbarma S, Ozbakkaloglu T. 2021. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 270:121857. https://doi.org/10.1016/j.conbuildmat.2020.121857
Cong P, Cheng Y. 2021. Advances in geopolymer materials: A comprehensive review. J. Traffic. Transp. Eng. 8(3):283-314. https://doi.org/10.1016/j.jtte.2021.03.004
Castel A, Foster SJ, Ng T, Sanjayan JG, Gilbert RI. 2016. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. Constr. 49(5):1619-28. https://doi.org/10.1617/s11527-015-0599-1
Kong DLY, Sanjayan JG. 2010. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40(2):334-339. https://doi.org/10.1016/j.cemconres.2009.10.017
Assi LN, Carter K, Deaver E, Ziehl P. 2020. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 263:121477. https://doi.org/10.1016/j.jclepro.2020.121477
Phoo-Ngernkham T, Chindaprasirt P, Sata V, Pangdaeng S, Sinsiri T. 2013. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive. Int. J. Miner. Metall. Mater. 20(2):214-220. https://doi.org/10.1007/s12613-013-0715-6
Nath SK, Maitra S, Mukherjee S, Kumar S. 2016. Microstructural and morphological evolution of fly ash based geopolymers. Constr. Build. Mater. 111:758-765. https://doi.org/10.1016/j.conbuildmat.2016.02.106
Hadi MNS, Zhang H, Parkinson S. 2019. Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. J. Build. Eng. 23:301-313. https://doi.org/10.1016/j.jobe.2019.02.006
Wazien AZW, Abdullah MMAB, Abd Razak R, Rozainy MAZMR, Tahir MFM. 2016. Strength and density of geopolymer mortar cured at ambient temperature for use as repair material. IOP Conf. Ser. Mater. Sci. Eng. 133(1):012042. https://doi.org/10.1088/1757-899X/133/1/012042
Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, et al. 2015. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews Elsevier. 105-21. https://doi.org/10.1016/j.earscirev.2014.11.016
De Rossi A, Ribeiro MJ, Labrincha JA, Novais RM, Hotza D, Moreira RFPM. 2019. Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. Process. Saf. Environ. Prot. 129:130-137. https://doi.org/10.1016/j.psep.2019.06.026
Adam AA, Horianto. 204. The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia. Eng. 95: 410-414. https://doi.org/10.1016/j.proeng.2014.12.199
Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. 2004. On the development of fly ash-based geopolymer concrete. ACI Mater. J. 101(6):467-72. https://doi.org/10.14359/13485
Nath P, Sarker PK, Rangan VB. 2015. Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia. Eng. 125:601-607. https://doi.org/10.1016/j.proeng.2015.11.077
Nath P, Sarker PK. 2015. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem. Concr. Compos. 55: 205-214. https://doi.org/10.1016/j.cemconcomp.2014.08.008
Shinde BH, Kadam KN. 2016. Properties of fly ash based geopolymer mortar with ambient curing. Int. J. Eng. Res. 8(1).
Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, MacPhee DE. 2011. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO 2-H2O. Cem. Concr. Res. 41(9): 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006
García-Lodeiro I, Fernández-Jiménez A, Palomo A. 2013. Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem. Concr. Res. 52:112-122. https://doi.org/10.1016/j.cemconres.2013.03.022
Mehta A, Siddique R. 2017. Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Constr. Build. Mater. 150:792-807. https://doi.org/10.1016/j.conbuildmat.2017.06.067
Fan CC, Huang R, Hwang H, Chao SJ. 2016. Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes. Constr. Build. Mater. 112:708-715. https://doi.org/10.1016/j.conbuildmat.2016.02.154
Diliberto C, Lecomte A, Aissaoui C, Mechling JM, Izoret L. 2021. The incorporation of fine recycled concrete aggregates as a main constituent of cement. Mater. Struct. Constr. 54(5). https://doi.org/10.1617/s11527-021-01796-6
Ashiquzzaman M, Hossen S. 2013. Cementing property evaluation of recycled fine aggregate. Int. Ref. J. Eng. Sci. 2(5):63-8. Retrieved from https://www.irjes.com/Papers/vol2-issue5/Version%20%201/I256368.pdf.
Lv Z, Chen H. 2012. Modeling of self-healing efficiency for cracks due to unhydrated cement nuclei in hardened cement paste. Procedia. Eng. 27:281-290. https://doi.org/10.1016/j.proeng.2011.12.454
Bordy A, Younsi A, Aggoun S, Fiorio B. 2017. Cement substitution by a recycled cement paste fine: Role of the residual anhydrous clinker. Constr. Build. Mater. 132:1-8. https://doi.org/10.1016/j.conbuildmat.2016.11.080
Ahmari S, Ren X, Toufigh V, Zhang L. 2012. Production of geopolymeric binder from blended waste concrete powder and fly ash. Constr. Build. Mater. 35: 718-729. https://doi.org/10.1016/j.conbuildmat.2012.04.044
Ren P, Li B, Yu JG, Ling TC. 2020. Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks. J. Clean. Prod. 267:122115. https://doi.org/10.1016/j.jclepro.2020.122115
IS 3812. 2013. Specifications for pulverized fuel ash, Part-1: For use as pozzolana in cement, cement mortar and concrete. Bur. Indian Stand. New Delhi, India.1-12.
IS 1727. 1967. Methods of test for pozzolanic materials. Bur. Indian Stand. New Delhi.
IS 4031-7. 1988. Methods of physical tests for hydraulic cement: Determination of compressive strength of masonry cement. Bureau of Indian Standards, New Delhi.
ASTM C642-13. ASTM International. 2013. Standard test method for density, absorption and voids in hardened concrete.
Annu B ASTM Stand. 2001. Standard test method for drying shrinkage of mortar containing hydraulic cement. 2(4): 11-3.
Van Deventer JSJ, Provis JL, Duxson P, Brice DG. 2010. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste and Biomass Valorization. 1(1):145-155. https://doi.org/10.1007/s12649-010-9015-9
Pangdaeng S, Phoo-ngernkham T, Sata V, Chindaprasirt P. 2014. Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater. Des. 53:269-274. https://doi.org/10.1016/j.matdes.2013.07.018
Sharma A, Singh P, Kapoor K. 2022. Utilization of recycled fine powder as an activator in fly ash based geopolymer mortar. Constr. Build. Mater. 323:126581. https://doi.org/10.1016/j.conbuildmat.2022.126581
Kaya M, Köksal F. 2021. Effect of cement additive on physical and mechanical properties of high calcium fly ash geopolymer mortars. Struct. Concr. 22(S1): E452-465. https://doi.org/10.1002/suco.202000235
Ren P, Li B, Yu JG, Ling TC. 2020. Utilization of recycled concrete fines and powders to produce alkali activated slag concrete blocks. J. Clean. Prod. 267:122115. https://doi.org/10.1016/j.jclepro.2020.122115
Afridi S, Sikandar MA, Waseem M, Nasir H, Naseer A. 2019. Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs). Constr. Build. Mater. 217:530-542. https://doi.org/10.1016/j.conbuildmat.2019.05.101
Riahi Dehkordi E, Moodi F, GivKashi MR, Ramezanianpour AA. 2023. Investigation of affecting factors on drying shrinkage and compressive strength of slag geopolymer mortar mixture. Arab. J. Sci. Eng. 49:5679-5696. https://doi.org/10.1007/s13369-023-08373-9
Yan S, Sagoe-Crentsil K. 2012. Properties of wastepaper sludge in geopolymer mortars for masonry applications. J. Environ. Manage. 112:27-32. https://doi.org/10.1016/j.jenvman.2012.07.008 PMid:22868380
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.