Materiales de Construcción, Vol 67, No 328 (2017)

Impact of using lightweight eco-bricks as enclosures for individual houses of one story on zones of high seismicity


https://doi.org/10.3989/mc.2017.03316

D. Dominguez
Facultad de Ingeniería. Universidad Talca, Chile
orcid http://orcid.org/0000-0001-6664-9011

V. P. Muñoz
Facultad de Ingeniería. Universidad Autónoma de Chile, Chile
orcid http://orcid.org/0000-0001-7958-1271

V. L. Muñoz
Universidad Internacional de La Rioja, Spain
orcid http://orcid.org/0000-0001-9970-6289

Abstract


Fired clay bricks are widely developed by focusing on the use of several wastes with the aim of obtaining lightweight materials. Despite research having provided positives experiences, most of these showed an important reduction of compression strength. This issue must be highlighted in particular, when seismic areas are considered. However, despite compression strength decreases in some cases the energy that can be absorbed by the brick might be increased. Hence, this paper tests and shows physical and mechanical properties of newly fired clays made by adding different percentages of sawdust. Results are used for calculating the response of an individual one-story house to medium intensity earthquakes. It is concluded that the use of bricks, with up to 5% sawdust added, is an ecological way for recycling these agro-wastes, while its behaviour against earthquakes performs better than other solutions, such as common perforated bricks.

Keywords


Fired Clay Brick; Organic Admixture; Mechanical properties; Earthquake; Modelization; Method of finite elements

Full Text:


HTML PDF XML

References


Raji, B.; Tenpierik, M.J.; Van Den Dobbelsteen, A. (2015) The impact of greening systems on building energy performance: A literature review. Renew. Sust. Energ. Rev., 45, 610-623. https://doi.org/10.1016/j.rser.2015.02.011

Muñoz V.P.; Morales, M.P.; Mendívil, M.A.; Muñoz, V.L. (2014) Fired clay bricks manufactured by adding wastes as sustainable construction material: A review. Construcc. Build. Mat., 63 97-107. https://doi.org/10.1016/j.conbuildmat.2014.03.045

Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. (2011) Development of sustainable construction material using industrial and agricultural solid waste: A review of wastecreate bricks. Construcc. Build. Mat., 25, 4037-4042. https://doi.org/10.1016/j.conbuildmat.2011.04.038

Bories, C.; Borredon, M.; Vedrenne, E.; Vilarem, G. (2014) Development of eco-friendly porous fired clay bricks using pore-forming agents: A review. J. Environ. Manage., 143, 186-196. https://doi.org/10.1016/j.jenvman.2014.05.006

Cuadra, C.; Tokeshi, K.; Karkee, M.B.; Sakaida, Y. (2007) Earthquake resistance of a historical brick building in Akita Prefecture, Japan. Wit Trans. Built. Env., 95, 699-707. https://doi.org/10.2495/STR070651

L_ik, I.; Uz, V. (2013) Turkey's clay brick and tile industry - History, present and future, Ziegelindustr. Int., 9, 22-29.

Haack, B.N.; Khatiwada, G. (2007) Rice and Bricks: Environmental Issues and Mapping of the Unusual Crop Rotation Pattern in the Kathmandu Valley, Nepal. Environ. Manage., 39(6), 774-782. https://doi.org/10.1007/s00267-006-0167-0 PMid:17453278

Lavado, L.; Taira, J.; Gallardo, J. (2014) Current state of masonry properties material on emerging zones in Lima city. J. Disaster Res., 9(6), 1015-1020. https://doi.org/10.20965/jdr.2014.p1015

INE (2015). Website of the Instituto Nacional de Estadística de Chile. (Spanish). Available at: http://ine.cl (July 2015).

CChC (2011). Website of the Cámara Chilena de la Construcción. Anuario de la construcción 2011 (Spanish). Available at: http://www.cchc.cl (July 2015).

López-Almansa, F.; Domínguez, D.; Benavent-Climent, A. (2013). Seismic performance of RC buildings with wide beams. Eng. Struct., 42(1), 687-702. https://doi.org/10.1016/j.engstruct.2012.08.033

Domínguez, D.; López-Almansa, F.; Benavent-Climent, A. (2014) Comportamiento, para el terremoto de Lorca de 11-05-2011, de edificios de vigas planas proyectados sin tener en cuenta la acción sísmica, Inf. Constr., 66(533) (spanish).

Phonphuak N.; Chindaprasirt, P. (2015) Types of waste, properties, and durability of pore-forming wastebased fired masonry bricks, In Eco-Efficient Masonry Bricks and Blocks, Chapter 6, Woodhead Publishing, Oxford, 2015, pp. 103-127. https://doi.org/10.1016/B978-1-78242-305-8.00006-1

Mostafaei H.; Kabeyasawa T. (2004) Effect of Infill Masonry Walls on the Seismic Response of Reinforced Concrete Buildings. Bull. Earthquake Res. Ins., 79, 133-156.

Seismosoft® "SeismoStruct v7.0.2 - A computer program for static and dynamic nonlinear analysis of framed structures," available from http://www.seismosoft.com, (July 2015).

EN 1998 (Eurocode 8). Disposición para el Proyecto de estructuras sismorresistentes. (2005).

EN 772-13:2000. Methods of test for masonry units - Part 13: Determination of net and gross dry density of masonry units (except for natural stone).

EN 772-3:1998. Methods of test for masonry units - part 3: Determination of net volume and percentage of voids of clay masonry units by hydrostatic weighing.

Velasco, P.M.; Ortiz, M.P.M.; Giró, M.A.M.; Melia, D.M.; Rehbein, J.H. (2015). Development of sustainable fired clay bricks by adding kindling from vine shoot: Study of thermal and mechanical properties. Appl. Clay Sci.,107 156-164 https://doi.org/10.1016/j.clay.2015.01.017

Huang, S.; Liu, H.; Xia, K. (2014) A dynamic ball compression test for understanding rock crushing. Rev. Sci. Instrum., 85 (12-1), 123902. https://doi.org/10.1063/1.4902836

Neuenhofer, A.; Filippou, F.C. (1997) Evaluation of nonlinear frame finite-element models. J. Struct. Eng-ASCE, 123(7), 958-966. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)

Park, Y.J.; Ang, A.H.S (1985) Mechanistic seismic damage model for reinforced concrete. J. Struct. Eng-ASCE, 111 (4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)

Huang, Z.M.; Chen, T. (2003) Comparison between flexibility- based and stiffness-based nonlinear beam-column elements. Gongcheng Lixue, 20 (5), 24-31.

Li, S.; Zhai, C.H.; Xie, L.L. (2009) Review of flexibilitybased finite element method for beam-column elements. J. Harbin Inst. Technol., 16(1), 81-86.

Alemdar, B.N.; White, D.W. (2005) Displacement, flexibility, and mixed beam-column finite element formulations for distributed plasticity analysis. J. Struct. Eng-ASCE, 131(12), 1811-1819. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1811)

Bento, R.; Bhatt, C.; Pinho, R. (2010) Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building. Earthqu. Struct., 1(2), 177-195. https://doi.org/10.12989/eas.2010.1.2.177

Mostafa, M.; Sivaselvan, M.V.; Felippa, C.A. (2013) Reusing linear finite elements in material and geometrically nonlinear analysis - Application to plane stress problems. Finite. Elem. Anal. Des., 69, 62-72. https://doi.org/10.1016/j.finel.2013.02.002

Scott, M.H.; Fenves, G.L. (2006) A plastic hinge simulation model for reinforced concrete members. 17th Anal. Comput. Spec. Conf., 7. https://doi.org/10.1061/40878(202)16

Karatarakis, A.; Metsis, P.; Papadrakakis, M. (2013) GPUacceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods. Comput. Methods Appl. Mech. Eng., 258, 63-80. https://doi.org/10.1016/j.cma.2013.02.011

Montella, G.; Calabrese, A.; Serino, G. (2014) Mechanical characterization of a Tire Derived Material: Experiments, hyperelastic modeling and numerical validation. Construcc. Build. Mat., 66, 336-347. https://doi.org/10.1016/j.conbuildmat.2014.05.078

Spizzuoco, M.; Calabrese, A.; Serino, G. (2014) Innovative low-cost recycled rubber-fiber reinforced isolator: Experimental tests and Finite Element Analyses. Eng. Struct., 76, 99-111. https://doi.org/10.1016/j.engstruct.2014.07.001

Smyrou, E.; Blandon, C.; Antoniou, S.; Pinho, R.; Crisafulli, F. (2011) Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bull. Earthquake Engin., 9 (5), 1519-1534. https://doi.org/10.1007/s10518-011-9262-6

EN 1998-6 (2005): Eurocode 8: Design of structures for earthquake resistance.

EN 1996-1-1 (2005) Eurocode 6: Design of masonry structures.

Mostafaei, H.; Vecchio, F.J.; Kabeyasawa, T. (2008) Nonlinear displacement-based response prediction of reinforced concrete columns. Eng. Struct., 30(9), 2436-2447. https://doi.org/10.1016/j.engstruct.2008.01.020

RENADIC. University of Chile. Faculty of physics sciences and mathematics (Spanish) Available at: http://www. renadic.cl/ (July 2015).

Manfredi, G. (2001) Evaluation of seismic energy demand. Earthqua. Eng. Struct. Dyn., 30 (4), 485-499. https://doi.org/10.1002/eqe.17

Arias, A. (1969) Measure of earthquake intensity pp. 438-483.

ASTM C62 - 10. Standard Specification for Building Brick (Solid Masonry Units Made From Clay or Shale)

Demir I. (2008) Effect of organic residues addition on the technological properties of clay bricks. Waste Manage., 28, 622-627. https://doi.org/10.1016/j.wasman.2007.03.019 PMid:17512183

Eliche-Quesada, D.; Corpas-Iglesias, F.A.; Pérez-Villarejo, L.; Iglesias-Godino, F.J. (2012) Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Construcc. Build. Mat., 34, 275-284. https://doi.org/10.1016/j.conbuildmat.2012.02.079

Barbieri L.; Andreola F.; Lancellotti I.; Taurino R. (2013). Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Manage., 33, 2307-2315. https://doi.org/10.1016/j.wasman.2013.03.014 PMid:23602302

Bánhidi, V.; Gömze, L.A. (2008) Improvement of insulation properties of conventional brick products. Mater. Sci. Forum, 589, 1-6. https://doi.org/10.4028/www.scientific.net/MSF.589.1

Elinwa, A.U. (2006) Effect of addition of sawdust ash to clay bricks. Civ. Eng. Environ. Syst., 23(4), 263-270. https://doi.org/10.1080/10286600600763149

Maciá, M. E.; Rolando A. (2013) Young modulus variation of a brickwork masonry element submitted to high temperatures. Mater. Constr., 63(309), 105-116. https://doi.org/10.3989/mc.2012.02311

Paulay T.; Priestley M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings. Jhon Wiley&Sons, Inc. New York (1192) ISBN 978-0-471-54915-4. https://doi.org/10.1002/9780470172841

Goel, R.K.; Chopra, A.K. (1998) Period formulas for concrete shear wall buildings. J. Struct. Eng-ASCE, 124 (4), 426-433. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(426)




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es