Materiales de Construcción, Vol 68, No 329 (2018)

Effect of Sporosarcina Pasteurii on the strength properties of compressed earth specimens

E. Bernat-Maso
Department of Strength of Materials and Engineering Structures. Technical University of Catalonia, Spain

L. Gil
Department of Strength of Materials and Engineering Structures. Technical University of Catalonia, Spain

C. Escrig
Department of Strength of Materials and Engineering Structures. Technical University of Catalonia, Spain

J. Barbé
Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Spain

P. Cortés
Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Spain


Microbial biodeposition of calcite induction for improving the performance of rammed earth is a research area that must be analysed in a representative environment. This analysis must consider the compaction force, particle size distribution and curing process as production variables. This paper investigates the effects of adding specific bacteria, Sporosarcina Pasteurii, into compressed earth cubes and the effect of production variables. Uniaxial compressive tests and direct shear tests have been conducted for 80 specimens. The results indicate that calcite precipitation interacts with the drying process of clay/silt resulting in reducing the compressive strength, the apparent cohesion and the friction angle. Finally, bacterial activity, which is more likely in samples cured in a high humidity environment, tends to reduce the dilatancy effect.


Calcium carbonate; Organic material; Curing; Compressive strength; Characterisation

Full Text:



Easton, D., Wright, C. (2007). The Rammed Earth House. Vermont: Chelsea Green Publishing (2007)

Miccoli, L., Müller, U., Fontana, P. (2014). Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob. Constr. Build. Mater., 61: 327–339.

DeJong, J. T., Fritzges, M. B., Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. J. Geotech. Geoenvironmental Eng., 132(11): 1381–1392.

Stocks-Fischer, S., Galinat, J. K., Bang, S. S. (1999). Microbiological precipitation of CaCO 3. Soil Biol. Biochem., 31(11): 1563–1571.

Ivanov, V., Chu, J., Stabnikov, V. (2015). Basics of Construction Microbial Biotechnology. In Biotechnologies and Biomimetics for Civil Engineering (pp. 21–56). Cham: Springer International Publishing (2015).

De Muynck, W., Debrouwer, D., De Belie, N., Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res., 38(7): 1005–1014.

Ramachandran, S. K., Ramakrishnan, V., Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Mater. J., 98(1): 3–9.

Chunxiang, Q., Jianyun, W., Ruixing, W., Liang, C. (2009). Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus Pasteurii. Mater. Sci. Eng. C, 29(4): 1273–1280.

Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E. (2010). Application of bacteria as selfhealing agent for the development of sustainable concrete. Ecol. Eng., 36(2): 230–235.

Sierra-Beltran, M. G., Jonkers, H. M., Schlangen, E. (2014). Characterization of sustainable bio-based mortar for concrete repair. Constr. Build. Mater., 67: 344–352.

Bang, S. S., Galinat, J. K., Ramakrishnan, V. (2001). Calcite precipitation induced by polyurethane-immobilized Bacillus Pasteurii. Enzyme Microb. Technol., 28(4–5): 404–409.

Bachmeier, K. L., Williams, A. E., Warmington, J. R., Bang, S. S. (2002). Urease activity in microbiologicallyinduced calcite precipitation. J. Biotechnol., 93(2): 171–181,

Bang, S. S., Lippert, J. J., Yerra, U., Mulukutla, S., Ramakrishnan, V. (2010). Microbial calcite, a biobased smart nanomaterial in concrete remediation. Int. J. Smart Nano Mater., 1(1): 28–39.

Jonkers, H. M. (2011). Bacteria-based self-healing concrete. Heron, 56(1–2): 5–16

Wang, J. Y., Soens, H., Verstraete, W., De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res., 56: 139–152.

Paassen, L. A. Van, Harkes, M. P., Zwieten, G. A. Van, Zon, W. H. Van Der, Star, W. R. L. Van Der, Loosdrecht, M. C. M. Van. (2009). Scale up of BioGrout : a biological ground reinforcement method Agrandissement de BioGrout: méthode biologique pour la consolidation des sols. 17th Int. Conf. Soil Mech. Geotech. Eng., 2328–2333.

Bernat-Maso, E., Gil, L., Escrig, C. (2016). Textilereinforced rammed earth: Experimental characterisation of flexural strength and thoughness. Constr. Build. Mater., 106: 470–479.

Committee D-18. (2004). D5102-04. Standard Test Method for Unconfined Compressive Strength of Compacted Soil- Lime Mixtures. Annu. B. ASTM Stand. Vol 04.08. West Conshohocken: ASTM International.

Committee D18. (2000). D6528-00. Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. West Conshohocken: ASTM International.

Committee AEN/CTN 83. (2007). UNE-EN 1015-11:2000/A1:2007. Métodos de ensayo de los morteros para alba-ilería. Parte 11: Determinación de la resistencia a flexión y a compresión del mortero endurecido. Madrid: AENOR.

Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support