Materiales de Construcción, Vol 69, No 333 (2019)

Manufacture of ceramics with high mechanical properties from red mud and granite waste


https://doi.org/10.3989/mc.2019.03818

I. Gonzalez-Triviño
Departamento de Ingeniería Civil, de Materiales y Fabricación, Universidad de Málaga, Spain
orcid http://orcid.org/0000-0002-0012-2425

J. Pascual-Cosp
Departamento de Ingeniería Civil, de Materiales y Fabricación, Universidad de Málaga, Spain
orcid http://orcid.org/0000-0001-5082-5957

B. Moreno
Departamento de Ingeniería Civil, de Materiales y Fabricación, Universidad de Málaga, Spain
orcid http://orcid.org/0000-0002-7453-7981

M. Benítez-Guerrero
Departamento de Ingeniería Civil, de Materiales y Fabricación, Universidad de Málaga, Spain
orcid http://orcid.org/0000-0002-0489-5636

Abstract


Red mud (bauxite residue) is an alkaline suspension that is the by-product of alumina production via the Bayer process. Its elevated annual production and the global inventory of red mud determine its valorisation. Granite can be used as a source of fluxing oxides for the ceramic industry, as can the flake-shaped waste generated during the flaming of granite. In this work, a set of ceramic pieces made of red mud and granite waste are prepared and characterised via X-ray diffraction, a hardness test, electron scanning microscopy, a leaching test, and determining open porosity, water absorption, bulk density and flexural strength of the samples. The main crystalline phases in the high-temperature fired products are hematite, pseudobrookite and anorthite; the presence of magnetite reveals their ferrimagnetic character. All samples present high mechanical properties. Leaching results are below critical levels established by regulations.

Keywords


Ceramic; Characterisation; Flexural strength; Mechanical properties; Scanning electron microscopy (SEM)

Full Text:


HTML PDF XML

References


Xue, S.; Zhu, F.; Kong, X.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. (2016) A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. Int. 23 [2], 1120-1132. https://doi.org/10.1007/s11356-015-4558-8 PMid:25911289

Report of the 28th meeting of the scientific group, International Maritime Organization Publishing, London (UK), (2005).

Dauvin, J.C. (2010) Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: The example of the Cassidaigne canyon (North-Western Mediterranean Sea). Mar. Pollut. Bull. 60 [2], 197-206. https://doi.org/10.1016/j.marpolbul.2009.09.026 PMid:19837438

Fabri, M.C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A. (2014) Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep Sea Res. II 104, 184-207. https://doi.org/10.1016/j.dsr2.2013.06.016

Fontanier, C.; Fabri, M.C.; Buscail, R.; Biscara, L.; Koho, K.; Reichart, G.J.; Cossa, D.; Galaup, S.; Chabaud, G.; Pigot, L. (2012) Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): Assessing the environmental impact of bauxite red mud disposal. Mar. Pollut. Bull. 64 [9], 1895-1910. https://doi.org/10.1016/j.marpolbul.2012.06.016 PMid:22795490

Czövek, D.; Novák, Z.; Somlai, C.; Asztalos, T.; Tiszlavicz, L.; Bozóki, Z.; Ajtai, T.; Utry, N.; Filep, A.; Bari, F.; Peták, F. (2012) Respiratory consequences of red sludge dust inhalation in rats. Toxicol. Lett. 209 [2], 113-120. https://doi.org/10.1016/j.toxlet.2011.12.006 PMid:22209771

Mi_ík, M.; Burke, I.T.; Reismu_ller, M.; Pichler, C.; Rainer, B.; Mi_íková, K.; Mayes, W.M.; Knasmueller, S. (2014) Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Sci. Total Environ. 493, 883-890. https://doi.org/10.1016/j.scitotenv.2014.06.052 PMid:25000584

Li, G.; Liu, M.; Rao, M.; Jiang, T.; Zhuang, J.; Zhang, Y. (2014) Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. J. Hazard. Mater. 280, 774-780 https://doi.org/10.1016/j.jhazmat.2014.09.005 PMid:25240647

Liu, Y.; Zhao, B.; Tang, Y.; Wan, P.; Chen, Y.; Lv, Z. (2014) Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochim. Acta 588, 11-15. https://doi.org/10.1016/j.tca.2014.04.027

Zhang, R.; Zheng, S.; Ma, S.; Zhang, Y. (2011) Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. J. Hazard. Mater. 189 [3], 827-835. https://doi.org/10.1016/j.jhazmat.2011.03.004 PMid:21444152

González-Trivi-o, I.; Benítez-Guerrero, M.; Carda Castelló, J.B.; Moreno, B.; Pascual-Cosp, J. (2018) Synthesis and characterization of ferrimagnetic glassceramic frit from waste. Int. J. Appl. Ceram. Technol. 15 [3], 775-782. https://doi.org/10.1111/ijac.12850

Kehagia, F. (2010) A successful pilot project demonstrating the re-use potential of bauxite residue in embankment construction. Resour. Conserv. Recycl. 54 [7], 417-421. https://doi.org/10.1016/j.resconrec.2009.10.001

Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P. (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 142 [3], 530-539. https://doi.org/10.1016/j.envpol.2005.10.017 PMid:16321462

Huang, W.; Wang, S.; Zhu, Z.; Li, L.; Yao, X.; Rudolph, V.; Haghseresht, F. (2008) Phosphate removal from wastewater using red mud. J. Hazard. Mater. 158 [1], 35-42. https://doi.org/10.1016/j.jhazmat.2008.01.061 PMid:18314264

Pontikes, Y.; Angelopoulos, G.N. (2013) Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resour. Conserv. Recycl. 73, 53-63. https://doi.org/10.1016/j.resconrec.2013.01.005

Rai, S.; Lataye, D.H.; Chaddha, M.J.; Mishra, R.S.; Mahendiran, P.; Mukhopadhyay, J.; Yoo, C.K.; Wasewar, K.L. (2013) An Alternative to Clay in Building Materials: Red Mud Sintering Using Fly Ash via Taguchi's Methodology. Adv. Mater. Sci. Eng. 2013, Article ID 757923. https://doi.org/10.1155/2013/757923

Pérez-Villarejo, L.; Corpas-Iglesias, F.A.; Martínez-Martínez, S.; Artiaga, R.; Pascual-Cosp, J. (2012) Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Constr. Build. Mater. 35, 656-665. https://doi.org/10.1016/j.conbuildmat.2012.04.133

Singh, S.; Nagar, R.; Agrawal, V.; Rana, A. (2015) Utilization of granite cutting waste in concrete as partial replacement of sand. Conference paper: UKIERI Concrete Congress - Concrete Research Driving Profit and Sustainability, Jalandhar, India.

Ashmole, I.; Motloung, M. (2008) Dimension stone: the latest trends in exploration and production technology. Conference paper: The international conference in surface mining, Johannesburg, South Africa.

Hamza, R.A.; El-Haggar, S.; Khedr, S. (2011) Marble and granite waste: characterization and utilization in concrete bricks. Int. J. Biosci. Biochem. Bioinforma. 1 [4], 286-291. https://doi.org/10.7763/IJBBB.2011.V1.54

González-Trivi-o, I.; Benítez-Guerrero, M.; Moreno, B.; Pascual-Cosp, J. (2018) Ferrimagnetic wollastonite ceramics based on waste valorization. Int. J. Appl. Ceram. Technol. 00, 1-6.

Committee AEN/CTN 138. (2014). UNE-EN ISO 10545- 4:2014. Ceramic tiles. Part 4: Determination of modulus of rupture and breaking strength. Madrid: AENOR. 23. Committee AEN/CTN 264. (20015). UNE-EN 843-4:2005. Advanced technical ceramics. Mechanical properties of monolithic ceramics at room temperature. Part 4: Vickers, Knoop and Rockwell superficial hardness tests. Madrid: AENOR.

Committee ISO/TC 189. (2018). ISO 10545-3:2018. Ceramic tiles. Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density. Switzerland: International Organization for Standardization.

Committee AEN/CTN 77. (2002). UNE-EN 12457-4:2002. Characterization of waste. Leaching. Compliance for leaching of granular waste materials and sludges. Part 4: One stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 10 mm (without or with size reduction). Madrid: AENOR.

Torres, P.; Manjate, R.S.; Quaresma, S.; Fernandes, H.R.; Ferreira, J.M.F. (2007) Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 27 [16], 4649-4655. https://doi.org/10.1016/j.jeurceramsoc.2007.02.217

Zhao, L.; Li, Y.; Jiang, F.; Cang, D. (2016) Effects of compositionchanges on the sintering properties of novel Steel slag ceramics. In: Advances in materials science for environmental and energy technologies V, John Wiley & Sons, Inc., Hoboken, New Jersey (USA), (2016).

Barrios de Arenas, I.; Arenas, F.; Cho, S.A.; Martínez, S.; Sicardi, R. (2000) Efecto de los aditivos en la formación y estabilidad térmica a baja temperatura del titanato de aluminio. Bol. Soc. Esp. Ceram. V. 39 [6], 699-703 (In Spanish). https://doi.org/10.3989/cyv.2000.v39.i6.768

Kato, E., Daimon, K., Takahashi, J. (1980) Decomposition Temperature of b-Al2TiO5. J. Am. Ceram. Soc. 63 [5-6], 355-356. https://doi.org/10.1111/j.1151-2916.1980.tb10745.x

Zhang, D. (2013) Ultra-supercritical coal power plants. Materials, technologies and optimisation, Woodhead publishing limited, Cambridge (UK), (2013). https://doi.org/10.1533/9780857097514

Özdemir, Ö., Dunlop, D.J. (2000) Intermediate magnetite formation during dehydration of goethite. Earth Planet Sci. Lett. 177 [1-2], 59-67. https://doi.org/10.1016/S0012-821X(00)00032-7

Watanabe, Y., Ishii, K. (1995) Geometrical consideration of the crystallography of the transformation from a-Fe2O3 to Fe3O4. Phys. Stat. Solids 150 [2], 673-686. https://doi.org/10.1002/pssa.2211500210

Guidelines for drinking-water quality, World Health Organization, Geneva (CH), (2011).




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es