Materiales de Construcción, Vol 70, No 338 (2020)

Characteristics and properties of Bitlis ignimbrites and their environmental implications


https://doi.org/10.3989/mc.2020.06519

E. Işık
Bitlis Eren University, Civil Eng. Dept., Turkey
orcid https://orcid.org/0000-0001-8057-065X

A. Büyüksaraç
Canakkale Onsekizmart University, Can Vocational School Canakkale, Turkey
orcid https://orcid.org/0000-0002-4279-4158

E. Avşar
Bitlis Eren University, Environmental Eng. Dept., Turkey
orcid https://orcid.org/0000-0001-6249-4753

M. F. Kuluöztürk
Bitlis Eren University, Electric and Electronic Eng. Dept., Turkey
orcid https://orcid.org/0000-0001-8581-2179

M. Günay
Bitlis Eren University, Pure and Applied Science Institute, Civil Eng. Dept., Turkey
orcid https://orcid.org/0000-0003-3242-4900

Abstract


Bitlis rock is used as a construction material and comes from the lava emitted by volcanoes and their subsequent transformation into ignimbrites. This type of rocks has been characterized physically, chemi­cally, toxicologically and radioactively using different procedures including determination of the coefficient of thermal conductivity, gamma spectrometry, ultrasonic speed test, ICP masses and metal extraction. The results indicate that Bitlis rocks have an ACI greater than 1, although their content of radon is lower than other rocks of volcanic origin. Leaching of metals from these rocks indicates that Pb and Cd can provide an infiltration level in the field higher than the level permitted by TCLP and they have undesired toxicological risks. The percent­ages of extraction of other metals also point to this infiltration problem. Despite this, the material offers good qualities for usage as a building material such as its thermal coefficients.

Keywords


Bitlis; Thermal Analysis; Physical properties; Mechanical properties; Ignimbrite; Heavy metals

Full Text:


HTML PDF XML

References


Van Zalinge, M.E.; Cashman, K.V.; Sparks, R.S.J. (2018) Causes of fragmented crystals in ignimbrites: a case study of the Cardones ignimbrite, Northern Chile. Bull Volcanol. 80 [3], 22.

Şimşek, O.; Erdal, M. (2004) Ahlat Taşının (ignimbrit) bazı mekanik ve fiziksel özelliklerinin araştırılması. G.U. J. Sci. 17 [4], 71–78.

Jordan, N. J.; Rotolo, S.G.; Williams, R.; Speranza, F.; McIntosh, W.C.; Branney, M. J.; Scaillet, S. (2018) Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralka­line volcano. J Volcano. Geoth. Res. 349, 47–73.

Liszewska, K. M.; White, J. C.; Macdonald, R.; Bagiński, B. (2018) Compositional and thermodynamic variability in a stratified magma chamber: Evidence from the Green Tuff Ignimbrite (Pantelleria, Italy). J. Petrol. 59 [12], 2245–2272.

Avery, M.S.; Gee, J.S.; Bowles, J.A.; Jackson, M. J. (2018) Paleointensity estimates from ignimbrites: The Bishop Tuff Revisited. Geochem. Geophy. Geosy. 19 [10], 3811–3831.

Yüksek, S. (2019) Mechanical properties of some building stones from volcanic deposits of mount Erciyes (Turkey). Mater. Construc. 69 [334], e187.

Koralay, T.; Özkul, M.; Kumsar, H.; Celik, S. B.; Pektaş, K. (2011) The effect of welding degree on geotechnical properties of an ignimbrite flow unit: The Bitlis castle case (eastern Turkey). Environ. Earth. Sci. 64 [3], 869–881.

Barbero-Barrera, M. M.; Flores-Medina, N.; Moreno- Fernández, E. (2019) Thermal, physical and mechanical characterization of volcanic tuff masonries for the restora­tion of historic buildings. Mater. Construcc. 69 [333], e179.

Burgos, D.; Guzmán, A.; Hossain, K.M.A.; Delvasto, S. (2017) The use of a volcanic material as filler in self-com­pacting concrete production for lower strength applications. Mater. Construcc. 67 [325], e111.

Wang, X.; Shen, X.; Wang, H.; Gao, C.; Zhang, T. (2016) Nuclear magnetic resonance analysis of freeze-thaw dam­age in natural pumice concrete. Mater. Construcc. 66 [322], e087.

Koralay T.; Özkul M.; Kumsar H.; Çelik S.B.; Pektaş, K. (2014) The Importance of Mineralogical, Petrographic and Geotechnical Studies in Historical Heritage: The Bitlis Castle Case (Bitlis-Eastern Anatolia). Selcuk University J. Engineer. Sci. Technol. 2 [3], 54–68.

Ivanović, M.D.; Kljajević, L.M.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.Ž.; Nenadović, S.S. (2018) Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construcc. 68 [330], e155.

Merdanoglu, B.; Altınsoy, N. (2006) Radioactivity con­centrations and dose assessment for soil samples from Kestanbol granite area, Turkey. Radiat. Prot. Dosim. 121 [4], 399–405.

Kayakökü, H.; Karatepe, Ş.; Dogru, M. (2016) Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey. Appl. Radiat. Isotopes. 115, 172–179.

ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, R., Hudson, J.A. (Eds.), Suggested Methods Prepared by the ISRM Commission on Testing Methods, Compilation Arranged by the ISRM Turkish National Group. Kozan Ofset, Ankara, 628 pp.

Erdem, M.; Baykara, O.; Dogru, M.; Kuluöztürk, F. (2010) A novel shielding material prepared from solid waste containing lead for gamma ray. Radiat. Phys. Chem. 79 [9], 917–922.

Baykara, O.; Karatepe, Ş.; Doǧru, M. (2011) Assessments of natural radioactivity and radiological hazards in con­struction materials used in Elazig, Turkey. Radiat. Measur. 46 [1], 153–158.

Trevisi, R.; Leonardi, F.; Risica, S.; Nuccetelli, C. (2018), Updated database on natural radioactivity in building materials in Europe. J. Environ. Radioactiv. 187, 90–105.

EPA, 1992. Test Method 1311 - TCLP, Toxicity Characteristic Leaching Procedure.

https://www.bureauveritas.com/services+sheet/metals-minerals/toxicity-characteristic-leaching-procedure-tclp, Access on: 26.03.2019.

Bayraktar C.A.; Avşar E.; Toröz İ.; Alp K.; Hanedar A. (2015) Stabilization and solidification of electric arc fur­nace dust originating from steel industry by using low grade MgO. Arch. Environ. Prot. 41 [4], 62–66.

EPA, (1994) Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry, https://www.epa.gov/sites/production/ files/2015-08/documents/method_200-8_rev_5-4_1994.pdf, Access on 26.03.2019.

TSE, 1987. Doğal yapı taşlarının muayene ve deney metotları (in Turkish), Türk Standartları Enstitüsü, Ankara.

Vasconcelos, G.; Lourenço, P. B.; Alves, C. A.; Pamplona, J. (2007) Prediction of the mechanical properties of granites by ultrasonic pulse velocity and Schmidt hammer hardness. North American Masonry Conference June 3–7 Missouri USA.

Fort, R.; de Buergo, M. A.; Perez-Monserrat, E. M. (2013) Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. Int. J. Rock. Mech. Min. 61, 296–305.

Sharma, P. K.; Khandelwal, M.; Singh, T. N. (2011) A cor­relation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Int. J. Earth Sci. 100 [1], 189–195.

Karakuş, M.; Tütmez, B. (2006) Fuzzy and multiple regres­sion modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech. Rock Eng. 39 [1], 45–57.

Sharma, P. K.; Singh, T. N. (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. B. Eng. Geol. Environ. 67 [1], 17–22.

Kurtuluş, C.; Irmak, T. S.; Sertçelik, I. (2010) Physical and mechanical properties of Gokceada: Imbros (NE Aegean Sea) island andesites. B. Eng. Geol. Environ. 69 [2], 321–324.

Işık, E.; Bakış, A.; Akıllı, A.; Hattaoğlu, F. (2015) Usability of Ahlat Stone as Aggregate in Reactive Powder Concrete. Int. J. App. Sci. Eng. Res. 4 [4], 507–514.

Dinçer, İ.; Özvan, A.; Akın, M.; Tapan, M.; Oyan, V. (2012) İgnimbiritlerin kapiler su emme potansiyellerinin değerlendirilmesi: Ahlat Taşı örneği. YYUFBED. 17 [2], 64–71. https://dergipark.org.tr/tr/pub/yyufbed/issue/21967/235855.

Pamuk, E.; Büyüksaraç, A. (2017) Investigation of strength characteristics of natural stones in Ürgüp (Nevşehir/ Turkey). BUSciTech. 7 [2], 74–79.

Lorenzi, A.; Tisbierek, F.T.; Silva, L. C. P. (2007) Ultrasonic pulse velocity análysis in concrete specimens. In IV Conferencia Panamericana de END, Buenos Aires.

Karakaya, M. C. Dogru, M.; Karakaya, N.; Vural, H. C.; Kuluöztürk, F.; Bal, S. Ş. (2015) Radioactivity concentra­tions and dose assessments of therapeutic peloids from some Turkish spas. Clay Miner. 50 [2], 221–232.

Karakaya, M. Ç.; Dogru, M.; Karakaya, N.; Kuluöztürk, F.; Nalbantçılar, M. T. (2017) Radioactivity and hydrochemical properties of certain thermal Turkish spa waters. J, Water Health. 15 [4], 591–601.

Rado SYS (2011) Radosys User Manuel, Hungary.

Turkish Atomic Energy Authority (TAEK) (2000) Unofficial Translation, (May), 1–5. https://www.oecd-nea. org/law/legislation/turkey.pdf

Akkurt, I.; Akyıldırım, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C. (2010) Photon attenuation coefficients of con­crete includes barite in different rate. Ann. Nucl. Energy. 37 [7], 910–914.

RLW, (2010) Regulation on Landfilling of Wastes, Turkish Ministry of Environment and Forestry. Official gazette date and number: 26.03.2010; 27533.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es