Materiales de Construcción, Vol 70, No 339 (2020)

Use of industrial wastes for the synthesis of belite clinker

M. K. Enríquez
Materials Catalysis & Environmental Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia,, Colombia

J. I. Tobón
Cement and Building Materials Research Group, Departamento de Materiales y Minerales, Facultad de Minas, Universidad Nacional de Colombia, Colombia

J. H. Ramírez
Materials Catalysis & Environmental Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Colombia


The synthesis of belite clinker was studied using industrial wastes: paper sludge, cement kiln dust and rice husk ashes, as substitutes for natural raw materials. Wastes were characterized by XRF, XRD and TG analysis. Different formulations were prepared to produce clinker at 1300, 1350 and 1400 °C. The clinker obtained was characterized using optical microscopy, XRD and f-CaO content determined by ethylene glycol method. Finally, the hydration of prepared cements with the clinkers was evaluated by isothermal microcalo­rimetry. It was found that by mixing paper sludge, cement kiln dust and rice husk ashes, it is possible to obtain belite clinker with f-CaO content below 0.5%, in clinkering temperatures between 1350 °C and 1400 °C without the use of natural raw materials. It was found that these cements have a high hydration kinetic, far above the rate of Ordinary Portland Cement, due mainly by the amorphous phase content in clinkers obtained.


Clinkering; Belite cement; Belite reactivity; Industrial waste; Cement hydration

Full Text:



United Nations (2019) The Future is now - Science for achieving sistainable development. Department of Economic and Social Affairs, United Nations, New York, (2019).

Kunal, P.; Siddique, R.; Rajor, A. (2012) Use of cement kiln dust in cement concrete and its leachate character­istics. Resour. Conserv. Recycl. 61, 59–68.

Abdel-Ghani, N.T.; El-Sayed, H.A.; El-Habak, A.A. (2018) Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some “green” cement products. HBRC J. 14 [3], 408–414.

Chaunsali, P.; Peethamparan, S. (2013) Influence of the composition of cement kiln dust on its interaction with fly ash and slag. Cem. Concr. Res. 54, 106–113.

Wang, W.; Meng, Y.; Wang, D. (2017) Effect of Rice Husk Ash on High-Temperature Mechanical Properties and Microstructure of Concrete. Kem. Ind. 66 [3–4], 157–164.

Ramezanianpour, A.A.; Mahdi, M.; Ahmadibeni, G. (2009) The Effect of Rice Husk Ash on Mechanical Properties and Durability of Sustainable Concretes. Int. J. Civ. Eng. 7 [2], 83–91.

Fuentes, N.; Oscar, F.; Vizcaino, L. (2015) Agro-Industrial waste as additions in development of concrete blocks no structural. Cienc. e Ing. Neogranadina. 25 [2], 99–116.

Quinchía, A.M.; Valencia, M.; Giraldo, J.M. (2007) Use of muds from the paper industry in the preparation of prefab­ricated panel for contruction. Rev. EIA. 8, 9–19.

Vieira, C.M.F.; Pinheiro, R.M.; Rodriguez, R.J.S.; Candido, V.S.; Monteiro, S.N. (2016) Clay bricks added with efflu­ent sludge from paper industry: Technical, economical and environmental benefits. Appl. Clay Sci. 132–133, 753–759.

Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A. (2015) Preparation of clinker from paper pulp industry wastes. J. Hazard. Mater. 286, 252–260.

Puertas, F.; García-Díaz, I.; Barba, A.; Gazulla, M.F.; Palacios, M.; Gómez, M.P.; Martínez-Ramírez, S. (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Compos. 30 [9], 798–805.

Schneider, M. (2019) The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124 [October], 105792.

Shi, C.; Qu, B.; Provis, J.L. (2019) Recent progress in low-carbon binders. Cem. Concr. Res. 122 [August], 227–250.

Zea-Garcia, J.D.; Santacruz, I.; Aranda, M.A.G.; De la Torre, A. G. (2019) Alite-belite-ye’elimite cements: Effect of dopants on the clinker phase composition and properties. Cem. Concr. Res. 115, 192–202.

García-Díaz, I.; Palomo, J.G.; Puertas, F. (2011) Belite cements obtained from ceramic wastes and the mineral pair CaF2/CaSO4. Cem. Concr. Compos. 33 [10], 1063–1070.

Pérez-Villarejo, L.; Corpas-Iglesias, F. A.; Martínez-Martínez, S.; Artiaga, R.; Pascual-Cosp, J. (2012) Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Constr. Build. Mater. 35, 656–665.

Iacobescu, R.I.; Koumpouri, D.; Pontikes, Y.; Saban, R.; Angelopoulos, G. N. (2011) Valorisation of electric arc fur­nace steel slag as raw material for low energy belite cements. J. Hazard. Mater. 196, 287–294.

Theodor Staněk, P. S. (2015) Active low-energy belite cement. Cem. Concr. Res. 68, 203–210.

Lin, K.L.; Lo, K.W.; Hung, M.J.; Cheng, T.W.; Chang, Y.M. (2017) Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the prepara­tion of Portland cement clinker. Sustain. Environ. Res. 27 [5], 251–257.

Al-Dhamri, H.; Melghit, K. (2010) Use of alumina spent catalyst and RFCC wastes from petroleum refinery to substitute bauxite in the preparation of Portland clin­ker. J. Hazard. Mater. 179 [1–3], 852–859.

Puertas, F.; García-Díaz, I.; Palacios, M.; Gazulla, M.F.; Gómez, M.P.; Orduña, M. (2010) Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cem. Concr. Compos. 32 [3], 175–186.

Gartner, E.; Hirao, H. (2015) A review of alternative approaches to the reduction of CO2emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 78, Part A, 126–142.

Najim, K.B.; Mahmod, Z.S.; Atea, A.K.M. (2014) Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar. Constr. Build. Mater. 55, 5–12.

ANEOR (2001) UNE-EN 12880:2001 Caracterización de lodos Determinación de la humedad y del contenido en materia seca.

Tsakiridis, P.E.; Samouhos, M.; Perraki, M. (2017) Valorization of Dried Olive Pomace as an alterna­tive fuel resource in cement clinkerization. Constr. Build. Mater. 153, 202–210.

Yao, Z.; Ma, X.; Wu, Z.; Yao, T. (2017) TGA–FTIR analy­sis of co-pyrolysis characteristics of hydrochar and paper sludge. J. Anal. Appl. Pyrolysis. 123, 40–48.

Jang, H-seok; Lim, Y. T.; Kang, J. H.; So, S-young; So, H-seok (2018) Influence of calcination and cooling condi­tions on pozzolanic reactivity of paper mill sludge. Constr. Build. Mater. 166, 257–270.

Kolovos, K.; Loutsi, P.; Tsivilis, S.; Kakali, G. (2001) The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part I. Anions. Cem. Concr. Res. 31 [3], 425–429.

Kolovos, K.; Loutsi, P.; Tsivilis, S.; Kakali, G. (2002) The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part II. Cations. Cem. Concr. Res. 32 [3], 463–469.

Kurdowski, W. (2014) Cement and Concrete Chemistry. New York: Springer, (2014).

Castañón, A.M.; García, S.; Gómez, F. (2012) A research of the mineralogy phases of clinker in a spanish cement using the method of Rietveld. Dyna. 79 [173], 41–47.

García-Maté, M.; Álvarez-Pinazo, G.; León-Reina, L.; De la Torre, A.G; Aranda, M.A.G. (2019) Rietveld quantita­tive phase analyses of SRM 2686a : A standard Portland clinker. Cem. Concr. Res. 115 [January], 361–366.

Segata, M.; Marinoni, N.; Galimberti, M.; Marchi, M.; Cantaluppi, M.; Pavese, A.; De la Torre, A.G. (2019) The effects of MgO , Na2O and SO3 on industrial clinkering process: phase composition , polymorphism , microstruc­ture and hydration , using a multidisciplinary approach. Mater. Charact. 155 [September], 109809.

Londono-Zuluaga, D.; Tobón, J.I.; Aranda, M.A. G.; Santacruz, I.; De la Torre, A.G. (2017) Clinkering and hydration of belite-alite-ye´elimite cement. Cem. Concr. Compos. 80, 333–341.

Huang, L.; Song, W.; Li, H.; Zhang, H.; Yang, Z. (2018) Effects of aphthitalite on the formation of clinker minerals and hydration properties. Constr. Build. Mater. 183, 275–282.

Li, X.; Xu, W.; Wang, S.; Tang, M.; Shen, X. (2014) Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism. Constr. Build. Mater. 58, 182–192.

Ma, S.; Ge, D.; Li, W.; Hu, Y.; Xu, Z.; Shen, X. (2019) Reaction of Portland cement clinker with gaseous SO2 to form alite-ye elimite clinker. Cem. Concr. Res. 116, 299–308.

Sáez del Bosque, I.F.; Martínez-Ramírez, S.; Blanco-Varela, M.T. (2015) Calorimetric study of the early stages of the nanosilica - tricalcium silicate hydration. Effect of temperature. Mater. Constr. 65 [320], e070.

Kacimi, L.; Simon-Masseron, A.; Salem, S.; Ghomari, A.; Derriche, Z. (2009) Synthesis of belite cement clinker of high hydraulic reactivity. Cem. Concr. Res. 39 [7], 559–565.

Tobón, J.I.; Payá, J.; Restrepo, O.J. (2015) Study of dura­bility of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater. 80, 92–97.

Tobón, J.I.; Díaz-Burbano, M.F.; Restrepo-Baena, O.J. (2016) Optimal fluorite/gypsum mineralizer ratio in Portland cement clinkering. Mater. Constr. 66 [322], e086.

Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support