Aprovechamiento de residuos industriales para la síntesis de clínker belítico

Autores/as

DOI:

https://doi.org/10.3989/mc.2020.14219

Palabras clave:

Clinkerización, Cemento belítico, Reactividad de la belita, Residuos industriales, Hidratación de cemento

Resumen


En el presente trabajo se estudió la síntesis de clínker belítico usando residuos industriales: lodo papelero, polvo de horno de cemento y ceniza de cascarilla de arroz, como sustitutos de las materias primas naturales. Los residuos se caracterizaron mediante FRX, DRX y TGA. Se prepararon formulaciones para producir clínker a 1300, 1350 y 1400 °C. El clínker se caracterizó usando microscopía óptica, DRX y f-CaO. Finalmente, se evaluó la hidratación de cementos preparados a partir de los clínkeres obtenidos. Se encontró que, con lodo papelero, polvo de horno de cemento y ceniza de cascarilla de arroz, es posible obtener clínker belítico con contenidos de f-CaO ≤ 0,5%, a temperaturas entre 1350 y 1400 °C sin el uso de materias primas de origen natural. Se encontró una alta cinética de hidratación, muy por encima de la velocidad de hidratación de un cemento Portland convencional, principal­mente debido al contenido de fase amorfa en los clínkeres obtenidos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

United Nations (2019) The Future is now - Science for achieving sistainable development. Department of Economic and Social Affairs, United Nations, New York, (2019).

Kunal, P.; Siddique, R.; Rajor, A. (2012) Use of cement kiln dust in cement concrete and its leachate character­istics. Resour. Conserv. Recycl. 61, 59-68. https://doi.org/10.1016/j.resconrec.2012.01.006

Abdel-Ghani, N.T.; El-Sayed, H.A.; El-Habak, A.A. (2018) Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some "green" cement products. HBRC J. 14 [3], 408-414. https://doi.org/10.1016/j.hbrcj.2017.11.001

Chaunsali, P.; Peethamparan, S. (2013) Influence of the composition of cement kiln dust on its interaction with fly ash and slag. Cem. Concr. Res. 54, 106-113. https://doi.org/10.1016/j.cemconres.2013.09.001

Wang, W.; Meng, Y.; Wang, D. (2017) Effect of Rice Husk Ash on High-Temperature Mechanical Properties and Microstructure of Concrete. Kem. Ind. 66 [3-4], 157-164. https://doi.org/10.15255/KUI.2016.054

Ramezanianpour, A.A.; Mahdi, M.; Ahmadibeni, G. (2009) The Effect of Rice Husk Ash on Mechanical Properties and Durability of Sustainable Concretes. Int. J. Civ. Eng. 7 [2], 83-91.

Fuentes, N.; Oscar, F.; Vizcaino, L. (2015) Agro-Industrial waste as additions in development of concrete blocks no structural. Cienc. e Ing. Neogranadina. 25 [2], 99-116. https://doi.org/10.18359/rcin.1434

Quinchía, A.M.; Valencia, M.; Giraldo, J.M. (2007) Use of muds from the paper industry in the preparation of prefab­ricated panel for contruction. Rev. EIA. 8, 9-19.

Vieira, C.M.F.; Pinheiro, R.M.; Rodriguez, R.J.S.; Candido, V.S.; Monteiro, S.N. (2016) Clay bricks added with efflu­ent sludge from paper industry: Technical, economical and environmental benefits. Appl. Clay Sci. 132-133, 753-759. https://doi.org/10.1016/j.clay.2016.07.001

Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A. (2015) Preparation of clinker from paper pulp industry wastes. J. Hazard. Mater. 286, 252-260. https://doi.org/10.1016/j.jhazmat.2014.12.053 PMid:25590818

Puertas, F.; García-Díaz, I.; Barba, A.; Gazulla, M.F.; Palacios, M.; Gómez, M.P.; Martínez-Ramírez, S. (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Compos. 30 [9], 798-805. https://doi.org/10.1016/j.cemconcomp.2008.06.003

Schneider, M. (2019) The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124 [October], 105792. https://doi.org/10.1016/j.cemconres.2019.105792

Shi, C.; Qu, B.; Provis, J.L. (2019) Recent progress in low-carbon binders. Cem. Concr. Res. 122 [August], 227-250. https://doi.org/10.1016/j.cemconres.2019.05.009

Zea-Garcia, J.D.; Santacruz, I.; Aranda, M.A.G.; De la Torre, A. G. (2019) Alite-belite-ye'elimite cements: Effect of dopants on the clinker phase composition and properties. Cem. Concr. Res. 115, 192-202. https://doi.org/10.1016/j.cemconres.2018.10.019

García-Díaz, I.; Palomo, J.G.; Puertas, F. (2011) Belite cements obtained from ceramic wastes and the mineral pair CaF2/CaSO4. Cem. Concr. Compos. 33 [10], 1063-1070. https://doi.org/10.1016/j.cemconcomp.2011.06.003

Pérez-Villarejo, L.; Corpas-Iglesias, F. A.; Martínez-Martínez, S.; Artiaga, R.; Pascual-Cosp, J. (2012) Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Constr. Build. Mater. 35, 656-665. https://doi.org/10.1016/j.conbuildmat.2012.04.133

Iacobescu, R.I.; Koumpouri, D.; Pontikes, Y.; Saban, R.; Angelopoulos, G. N. (2011) Valorisation of electric arc fur­nace steel slag as raw material for low energy belite cements. J. Hazard. Mater. 196, 287-294. https://doi.org/10.1016/j.jhazmat.2011.09.024 PMid:21944704

Theodor Staněk, P. S. (2015) Active low-energy belite cement. Cem. Concr. Res. 68, 203-210. https://doi.org/10.1016/j.cemconres.2014.11.004

Lin, K.L.; Lo, K.W.; Hung, M.J.; Cheng, T.W.; Chang, Y.M. (2017) Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the prepara­tion of Portland cement clinker. Sustain. Environ. Res. 27 [5], 251-257. https://doi.org/10.1016/j.serj.2017.05.001

Al-Dhamri, H.; Melghit, K. (2010) Use of alumina spent catalyst and RFCC wastes from petroleum refinery to substitute bauxite in the preparation of Portland clin­ker. J. Hazard. Mater. 179 [1-3], 852-859. https://doi.org/10.1016/j.jhazmat.2010.03.083 PMid:20395040

Puertas, F.; García-Díaz, I.; Palacios, M.; Gazulla, M.F.; Gómez, M.P.; Orduña, M. (2010) Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cem. Concr. Compos. 32 [3], 175-186. https://doi.org/10.1016/j.cemconcomp.2009.11.011

Gartner, E.; Hirao, H. (2015) A review of alternative approaches to the reduction of CO2emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 78, Part A, 126-142. https://doi.org/10.1016/j.cemconres.2015.04.012

Najim, K.B.; Mahmod, Z.S.; Atea, A.K.M. (2014) Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar. Constr. Build. Mater. 55, 5-12. https://doi.org/10.1016/j.conbuildmat.2014.01.015

ANEOR (2001) UNE-EN 12880:2001 Caracterización de lodos Determinación de la humedad y del contenido en materia seca.

Tsakiridis, P.E.; Samouhos, M.; Perraki, M. (2017) Valorization of Dried Olive Pomace as an alterna­tive fuel resource in cement clinkerization. Constr. Build. Mater. 153, 202-210. https://doi.org/10.1016/j.conbuildmat.2017.07.102

Yao, Z.; Ma, X.; Wu, Z.; Yao, T. (2017) TGA-FTIR analy­sis of co-pyrolysis characteristics of hydrochar and paper sludge. J. Anal. Appl. Pyrolysis. 123, 40-48. https://doi.org/10.1016/j.jaap.2016.12.031

Jang, H-seok; Lim, Y. T.; Kang, J. H.; So, S-young; So, H-seok (2018) Influence of calcination and cooling condi­tions on pozzolanic reactivity of paper mill sludge. Constr. Build. Mater. 166, 257-270. https://doi.org/10.1016/j.conbuildmat.2018.01.119

Kolovos, K.; Loutsi, P.; Tsivilis, S.; Kakali, G. (2001) The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part I. Anions. Cem. Concr. Res. 31 [3], 425-429. https://doi.org/10.1016/S0008-8846(00)00461-0

Kolovos, K.; Loutsi, P.; Tsivilis, S.; Kakali, G. (2002) The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part II. Cations. Cem. Concr. Res. 32 [3], 463-469. https://doi.org/10.1016/S0008-8846(01)00705-0

Kurdowski, W. (2014) Cement and Concrete Chemistry. New York: Springer, (2014). https://doi.org/10.1007/978-94-007-7945-7

Castañón, A.M.; García, S.; Gómez, F. (2012) A research of the mineralogy phases of clinker in a spanish cement using the method of Rietveld. Dyna. 79 [173], 41-47.

García-Maté, M.; Álvarez-Pinazo, G.; León-Reina, L.; De la Torre, A.G; Aranda, M.A.G. (2019) Rietveld quantita­tive phase analyses of SRM 2686a : A standard Portland clinker. Cem. Concr. Res. 115 [January], 361-366. https://doi.org/10.1016/j.cemconres.2018.09.011

Segata, M.; Marinoni, N.; Galimberti, M.; Marchi, M.; Cantaluppi, M.; Pavese, A.; De la Torre, A.G. (2019) The effects of MgO , Na2O and SO3 on industrial clinkering process: phase composition , polymorphism , microstruc­ture and hydration , using a multidisciplinary approach. Mater. Charact. 155 [September], 109809. https://doi.org/10.1016/j.matchar.2019.109809

Londono-Zuluaga, D.; Tobón, J.I.; Aranda, M.A. G.; Santacruz, I.; De la Torre, A.G. (2017) Clinkering and hydration of belite-alite-ye'elimite cement. Cem. Concr. Compos. 80, 333-341. https://doi.org/10.1016/j.cemconcomp.2017.04.002

Huang, L.; Song, W.; Li, H.; Zhang, H.; Yang, Z. (2018) Effects of aphthitalite on the formation of clinker minerals and hydration properties. Constr. Build. Mater. 183, 275-282. https://doi.org/10.1016/j.conbuildmat.2018.06.082

Li, X.; Xu, W.; Wang, S.; Tang, M.; Shen, X. (2014) Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism. Constr. Build. Mater. 58, 182-192. https://doi.org/10.1016/j.conbuildmat.2014.02.029

Ma, S.; Ge, D.; Li, W.; Hu, Y.; Xu, Z.; Shen, X. (2019) Reaction of Portland cement clinker with gaseous SO2 to form alite-ye elimite clinker. Cem. Concr. Res. 116, 299-308. https://doi.org/10.1016/j.cemconres.2018.11.021

Sáez del Bosque, I.F.; Martínez-Ramírez, S.; Blanco-Varela, M.T. (2015) Calorimetric study of the early stages of the nanosilica - tricalcium silicate hydration. Effect of temperature. Mater. Constr. 65 [320], e070. https://doi.org/10.3989/mc.2015.06814

Kacimi, L.; Simon-Masseron, A.; Salem, S.; Ghomari, A.; Derriche, Z. (2009) Synthesis of belite cement clinker of high hydraulic reactivity. Cem. Concr. Res. 39 [7], 559-565. https://doi.org/10.1016/j.cemconres.2009.02.004

Tobón, J.I.; Payá, J.; Restrepo, O.J. (2015) Study of dura­bility of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater. 80, 92-97. https://doi.org/10.1016/j.conbuildmat.2014.12.074

Tobón, J.I.; Díaz-Burbano, M.F.; Restrepo-Baena, O.J. (2016) Optimal fluorite/gypsum mineralizer ratio in Portland cement clinkering. Mater. Constr. 66 [322], e086. https://doi.org/10.3989/mc.2016.05515

Publicado

2020-09-15

Cómo citar

Enríquez, M. K., Tobón, J. I., & Ramírez, J. H. (2020). Aprovechamiento de residuos industriales para la síntesis de clínker belítico. Materiales De Construcción, 70(339), e226. https://doi.org/10.3989/mc.2020.14219

Número

Sección

Artículos