Effect of specimen size and loading conditions on indirect tensile test results


  • S. Carmona Universidad Técnica Federico Santa María, Valparaíso




indirect tensile test, tensile strength, effect of size, concrete


Due to the difficulties inherent in the direct measurement of concrete tensile strength, experimental methods have been devised to determine this property indirectly. One such method, the splitting or indirect tensile test, also known as the Brazilian test, is widely used for its convenience and applicability to freshly moulded cubic and cylindrical specimens, as well as to hardened concrete core samples.

Nevertheless, the strength values obtained with this method have been observed to differ with specimen size. Moreover, the strength values calculated with the formula proposed in the existing standards fail to reflect real test conditions and actually overestimate tensile strength.

The experimental results reported in this article show that if the test set up is modified slightly and the equation for calculating strength is adjusted, consistent strength values are obtained, regardless of specimen size, in the range of diameters studied (45 - 294 mm).


Download data is not yet available.


(1) Neville, A. M.: Properties of Concrete, John Wiley & Sons, Inc., London (1996), p. 844.

(2) ASTM International: ASTM C-496, “Standard test method for splitting tensile strength of cylindrical concrete specimens”, Annual Book of ASTM Standards, vol. 04.02 – Concrete and Aggregates (2002), pp. 281-284.

(3) Instituto Nacional De Normalizacion: NCh 1170 Of. 77, Hormigon – Ensayo de traccion por hendimiento (1977), p. 7.

(4) British Standards: BS 1881 – 117, Testing concrete Method for determination of tensile splitting strength (1983), p. 6.

(5) Rilem: Tension splitting of concrete specimen, CPC6, 1975, Rilem Technical Recommendation for the Testing and Use of Construction Materials, E&FN Spon, London (1994), pp. 21-22.

(6) Tang, T.; Shah, S. P. y Ouyang, C.: “Fracture Mechanics and Size Effect of Concrete in Tension”, ASCE Journal of Structural Engineering, vol. 118 (1992), pp. 3169-3185. doi:10.1061/(ASCE)0733-9445(1992)118:11(3169)

(7) Bazˇant, Z. P.; Ozbolt, J. y Eligehausen, R.: “Fracture size effect: review of evidence for concrete structures”, ASCE Journal of Structural Engineering, vol. 120 (1994), pp. 2377-2398. doi:10.1061/(ASCE)0733-9445(1994)120:8(2377)

(8) Sabins, G. M. y Mirza, S. M.: “Size effects in model concretes?”, ASCE Journal of the Structural Division, vol. 106 (1979), pp. 1007-1020.

(9) Chen, W. F. y Yuan, R.: “Tensile strength of concrete: Double-Punch test”. ASCE Journal of the Structural Division, vol. 106 (1980), pp. 1673-1693.

(10) Hasegawa, T.: Size effect on splitting tensile strength of concrete, Proceedings JCI (1985), pp. 309-312.

(11) Bazˇant, Z. P.; Kazemi, M. T.; Hasegawa, T. y Mazars, J.: “Size effect in Brazilian split-cylinder test. Measurement and analysis”, ACI Material Journal, vol. 88 (1991), pp. 325-332.

(12) Rocco, C.; Guinea, G. V.; Planas, J. y Elices, M.: “The effect of the boundary conditions on the cylinder splitting strength”, Fracture Mechanics of Concrete Structures, Ed. F. H. Wittmann, Aedificatio Publishers, Alemania (1995), pp. 75-84.

(13) Rocco, C.; Guinea, G. V.; Planas, J. y Elices, M.: “Efecto del tamano de probeta sobre la Resistencia a la traccion medida con el ensayo brasileno”, XV Asamblea Tecnica Nacional de la ATEP, Hormigon y Acero – 2° Trimestre (1997), pp. 47-63.

(14) ASTM International: ASTM C-595: Standard specification for blended hydraulic cements. Annual Book of ASTM Standards, vol. 04.01 – Cement, Gypsum and Lime. (2002) pp. 323-329.




How to Cite

Carmona, S. (2009). Effect of specimen size and loading conditions on indirect tensile test results. Materiales De Construcción, 59(294), 7–18. https://doi.org/10.3989/mc.2009.43307



Research Articles