Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles


  • A. Enfedaque Universidad Politécnica de Madrid
  • H. L. Romero Universidad Politécnica de Madrid
  • J. C. Gálvez Universidad Politécnica de Madrid



Concrete, Freezing-thawing, Air-entraining additive, Silica fume


The current standards that regulate use of structural concrete have highlighted the durability of concrete. However, how the fracture energy of concrete evolves under the action of freeze-thaw cycles is not well known. The fracture energy of two types of concrete, one with an air-entraining additive and the other with silica fume addition, is studied after four, 14 and 28 freeze-thaw cycles. The results obtained show that the concrete with an air-entraining additive was undamaged and that fracture energy grew slightly. In addition to this, they also showed that the concrete with silica fume addition suffered severe surface scaling and its fracture energy changed due to the greater fracture areas generated.


Download data is not yet available.


1. Ministerio de Fomento. Code on Structural Concrete EHE-08. (2008). (English version available at

2. Jacobsen, S.; Sather, D.H.; Sellevold, E.J. (1997) Frost testing of high strength concrete: frost/salt scaling at different cooling rate. Mat. Struct. 30 [1], 33–42.

3. Valenza, J.J.; Scherer, G.W. (2007) A review of salt scaling: I. Phenomenology. Cem. Concr. Res. 37 [7], 1007–21.

4. Valenza, J.J.; Scherer, G.W. (2007) A review of salt scaling: II. Mechanisms. Cem. Concr. Res. 37 [7], 1022–34.

5. Mays, G.; Wang, K. (2009) Effects of Strength, Permeability, and Air void Parameters on Freeze-thawing Resistance of Concrete with and without Air Entrainment. Journal of ASTM International. 6 [10].

6. Sabir, B.B.; Kouyiali, K. (1991) Freeze-thaw durability of air-entrained CSF concrete. Cem. Concr. Compos. 13 [3], 203–208.

7. Sabir B.B. (1997) Mechanical properties and frost resistance of silica fume concrete. Cem. Concr. Compos. 19 [4], 285–294.

8. Halit, Y. (2008) The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete. Constr. Build. Mater. 22 [4], 456–462.

9. Bleszynsky, R.; Hooton, R.D.; Thomas, D.A.; Rogers, C.A. (2002) Durability of ternary blend concrete with silica fume and blast furnace slag: Laboratory and outdoor exposure site studies. ACI Mater. J. 99 [5], 499–508.

10. Al-Assadi, G. (2009) Influencia de las condiciones de curado en el comportamiento del hormigón sometido a ciclos hielo-deshielo, Ph.D Thesis, Universidad Politécnica Madrid.

11. Al-Assadi, G.; Casati, M.J.; Fernandez, J.; Gálvez, J.C. (2011) Effect of the curing conditions of concrete on the behaviour under freeze-thaw cycles. Fatigue Fract. Eng. Mater. Struct. 34 [7], 461–469.

12. Romero, H.L. (2011) Deterioro del hormigón sometido a ensayos acelerados de hielo-deshielo en presencia de cloruros. Ph.D Thesis, Universidad Politécnica Madrid.

13. Shang, H.S.; Song, Y.P. (2006) Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles. Cem. Concr. Res. 36 [10], 1857–1864.

14. Shang, H.S.; Song, Y.P.; Qin, L.K. (2008) Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles, Build. Environ. 43 [7], 1197–1204.

15. Shang, H.S.; Song, Y.P.; Ou, J. (2009) Behavior of air-entrained concrete after freeze-thaw cycles, Acta Mech. Solida Sin. 22 [3], 261–266.

16. Shang, H.S.; Song, Y.P. (2013) Triaxial compressive strength of air-entrained concrete after freeze–thaw cycles, Cold Reg. Sci. Technol. 90-91, 33–37.

17. AENOR. UNE-CEN/TS 12390-09, (2009) Testing hardened concrete. Part 9: Freeze-thaw resistance. Scaling.

18. ASTM. C231/C231M-10 (2010) Standard Test Method for air content of freshly mixed concrete by the pressure method.

19. Bishnoi, S., Uomoto, T. (2008) Strain–temperature hysteresis in concrete under cyclic freeze–thaw conditions. Cem. Concr. Compos. 30 [5], 374–380.

20. Enfedaque, A.; Al-Assadi, G.; Romero, H.L.; Gálvez, J.C.; Zhe,W. (2011) Durabilidad del hormigón frente a los ciclos hielo-deshielo. Evaluación de dos tipos de hormigón. Anales de la Mecánica de la fractura XVIII. 675–680.

21. Romero, H.L.; Casati, M.J.; Gálvez, J.C.; Molero, M.; Hernández, M.G.: (2011) Deterioro del hormigón sometido a ciclos de hielo-deshielo en presencia de cloruros. Anales de la Mecánica de la fractura XVIII. 669–674.

22. Planas, J.; Guinea, G.V.; Gálvez, J.C.; Sanz, B.; Fathy, (2007) Indirect tests for stress-crack opening curve. A.M. RILEM TC-187-SOC.

23. RILEM TC 50-FMC. (1985) Determination of the Fracture Energy of Mortar and Concrete by means of Three-point Bend Test on Notched Beams. Mater. Struct. 18, 285–290.

24. Du, L.; Folliard, K.J. (2005) Mechanisms of air entrainment in concrete, Cem. Concr. Res. 35 [8], 1463-1471.

25. Penttala, V.; Al-Neshawy, F. (2002) Stress and strain state of concrete during freezing and thawing cycles. Cem.Concr. Res., 32 [9], 1407–1420.

26. Setzer, M.J. (2001) Micro-Ice-Lens Formation in Porous Solid. J.Colloid Interface Sci. 243 [1], 193–201.

27. Fernández Cánovas, M. (2010) Hormigón. Colegio de Ingenieros de Caminos, Canales y Puertos.

28. Fathy A.M.; Sanz B.; Sancho J.M.; Planas J. (2008) Determination of the bilinear stress-crack opening curve for normal- and high-strength concrete, Fatigue Fract. Eng. Mater. Struct. 31 [7], 539–48.

29. ASTM. C666/C666M-03 Standard Test Method for resistance of concrete to rapid freezing and thawing. 2008.

30. Model Code 2010, Final Draft, FIB Bulletin 65 & 66, Lausanne, Swizterland, 2012. PMCid:PMC3432719



How to Cite

Enfedaque, A., Romero, H. L., & Gálvez, J. C. (2014). Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles. Materiales De Construcción, 64(313), e005.



Research Articles

Most read articles by the same author(s)