Recent advances in structural fibre-reinforced concrete focused on polyolefin-based macro-synthetic fibres
DOI:
https://doi.org/10.3989/mc.2020.12418Keywords:
Concrete, Fibre reinforcement, Mechanical properties, Tensile strength, Durability, Polyolefin fibresAbstract
Fibre-reinforced concrete (FRC) allows reduction in, or substitution of, steel-bars to reinforce concrete and led to the commonly named structural FRC, with steel fibres being the most widespread. Macro-polymer fibres are an alternative to steel fibres, being the main benefits: chemical stability and lower weight for analogous residual strengths of polyolefin-fibre-reinforced concrete (PFRC). Furthermore, polyolefin fibres offer additional advantages such as safe-handling, low pump-wear, light weight in transport and storage, and an absence of corrosion. Other studies have also revealed environmental benefits. After 30 years of research and practice, there remains a need to review the opportunities that such a type of fibre may provide for structural FRC. This study seeks to show the advances and future challenges of use of these polyolefin fibres and summarise the main properties obtained in both fresh and hardened states of PFRC, focussing on the residual strengths obtained from flexural tensile tests.
Downloads
References
Nawy, E. G. (2008). Concrete construction engineering handbook. 2ed. CRC press. https://doi.org/10.1201/9781420007657
Romualdi, James P.; Batson, G. B. (1963) Behavior of reinforced concrete beams with closely spaced reinforcement. ACI J. Proc.. 60, 6. https://doi.org/10.14359/7878
Romualdi, James P.; Mandel, James A. (1964) Tensile Strength of concrete Affected by Unigormly Distributed and Closely Spaced Short Lengths of wire Reinforcement, ACI J. Proc 61(6), 1964. https://doi.org/10.14359/7801
ACI Committee 544, ACI 544.3R-08. Guide for specifying, proportioning, and production of fiber reinforced concrete, Farmington Hills: American Concrete Institute, 2008.
Fib Model Code, Paris: Fédération Internationale du Béton fib/International Federation for Structural Concrete, 2010.
RILEM TC-162-TDF Bending test: Final recommendations, 2002.
RILEM TC 162-TDF. (2000) Test and design methods for steel fibre reinforced concrete, Mat. Struct. 33[2], 33, 75-81. https://doi.org/10.1007/BF02484159
CNR-DT 204, 2006. Guide for the design and construction of fiber-reinforced concrete structures, Consiglio Nazionale delle Riserche, Roma.
EHE-08, Spanish Struct. Concrete. Code, Spanish Minister of Public Works, Madrid, 2008.
Ramakrishnan, V. (1999). Structural Application of Polyolefin Fiber Reinforced Concrete. Special Publication, 182, 235-253.
Serna, P.; Arango, S.; Ribeiro, T.; Núñez, A. M.; Garcia- Taengua, E. (2009). Structural cast-in-place SFRC: technology, control criteria and recent applications in spain. Mat. Struct. 42, 1233-1246. https://doi.org/10.1617/s11527-009-9540-9
Serna, P. (2007). Recientes ejemplos estructurales de aplicación de hormigón de fibras. Avances en tecnología del hormigón en construcción subterránea, Jornada Técnica, 33-48.
EN 14889-1, Fibres for concrete. Steel fibres. Definitions, specifications and conformity, 2008.
EN 14889-2, Fibres for concrete. Polymer fibres. Definitions, specifications and conformity, 2008.
EN 14845-1, Test methods for fibres in concrete. Part I: Reference concretes, 2006.
Di Prisco, M.; Colombo, M.; Dozio, D. (2013) Fibre-reinforced concrete in fib Model Code 2010: principles, models and test validation, Struct. Concrete., 14[4], pp. 342-361, 2013. https://doi.org/10.1002/suco.201300021
Pujadas, P.; A. Blanco; Cavalaro, S. ;Aguado, A. (2014) Plastic fibres as the only reinforcement for flat suspended slabs: Experimental investigation and numerical simulation, Construc. Build. Mat. 57, 92-104. https://doi.org/10.1016/j.conbuildmat.2014.01.082
Bentur, A; Mindess, S. (2006) Fibre reinforced cementitious composites, Taylor & Francis.
Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. (2015). Use of macro plastic fibres in concrete: a review. Construc. Build. Mat., 93, 180-188. https://doi.org/10.1016/j.conbuildmat.2015.05.105
Trottier, J. F.; Mahoney, M. (2001). Innovative synthetic fibers. Concrete International, 23[6], 23-28.
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C. (2014). On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Construc. Build. Mat., 55, 274-288. https://doi.org/10.1016/j.conbuildmat.2014.01.024
Soutsos, M. N.; Le, T. T. ; Lampropoulos, A. P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construc. Build. Mat., 36, 704-710. https://doi.org/10.1016/j.conbuildmat.2012.06.042
Behfarnia, K.; Behravan, A. (2014). Application of high performance polypropylene fibers in concrete lining of water tunnels. Mater. Design., 55, 274-279. https://doi. org/10.1016/j.matdes.2013.09.075 https://doi.org/10.1016/j.matdes.2013.09.075
Kawashima, K.; Zafra, R.; Sasaki, T.; Kajiwara, K.; Nakayama, M. (2011). Effect of polypropylene fiber reinforced cement composite and steel fiber reinforced concrete for enhancing the seismic performance of bridge columns. J. Earthq. Engineer., 15[8], 1194-1211. https://doi.org/10.1080/13632469.2011.569051
Banthia, N.; Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res., 36[7], 1263-1267. https://doi.org/10.1016/j.cemconres.2006.01.010
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C. (2016). Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Engineer. Fractu. Mech., 154, 225- 244. 27. https://doi.org/10.1016/j.engfracmech.2015.12.032
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C. (2015). Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete. Construc. Build. Mat., 85, 182-194. https://doi.org/10.1016/j.conbuildmat.2015.03.007
Pujadas, P.; Blanco, A.; Cavalaro, S.; de la Fuente, A.; Aguado, A. (2014). Fibre distribution in macro-plastic fibre reinforced concrete slab-panels. Construc. Build. Mat., 64, 496-503. https://doi.org/10.1016/j.conbuildmat.2014.04.067
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C.; Agrawal, V. (2016). Fibre distribution and orientation of macro-synthetic polyolefin fibre reinforced concrete elements. Construc. Build. Mat., 122, 505-517. https://doi.org/10.1016/j.conbuildmat.2016.06.083
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C.; Agrawal, V. (2016). Reliability of polyolefin fibre reinforced concrete beyond laboratory sizes and construction procedures. Compos. Struct., 140, 506-524. https://doi.org/10.1016/j.compstruct.2015.12.068
Alberti, M. G. (2015). Polyolefin fibre-reinforced concrete: from material behaviour to numerical and design considerations. Doctoral Thesis. Universidad Politécnica Madrid. http://oa.upm.es/36414/
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C.; Pinillos, L. (2017). Structural Cast-in-Place Application of Polyolefin Fiber-Reinforced Concrete in a Water Pipeline Supporting Elements. J. Pipeline Syst. Eng., 8(4), 05017002. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000274
Yin, S.; Tuladhar, R.; Sheehan, M.; Combe, M.; Collister, T. (2016). A life cycle assessment of recycled polypropylene fibre in concrete footpaths. J. Clean. Prod., 112, 2231-2242. https://doi.org/10.1016/j.jclepro.2015.09.073
Shen, L.; Worrell, E.; Patel, M. K. (2010). Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resour. Conser. Recy., 55[1], 34-52. https://doi.org/10.1016/j.resconrec.2010.06.014
Sorensen, C.; Berge, E.; Nikolaisen, E. B. (2014). Investigation of fiber distribution in concrete batches discharged from ready-mix truck. International J. Concr. Struct. Mater., 8[4], 279-287. https://doi.org/10.1007/s40069-014-0083-2
Ochi, T.; Okubo, S.; Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Comp., 29[6], 448-455. https://doi.org/10.1016/j.cemconcomp.2007.02.002
SUgbolue, S.C. (2009). Polyolefin fibres: industrial and medical applications., CRC Press, Cambridge. https://doi.org/10.1201/9781420099867
McYintyre, J.E. (2004). Synthetic fibres: nylon, polyester, acrylic, polyolefin, Elsevier
Pujadas, P. (2013). Caracterización y diseño del homigón reforzado con fibras plásticas. Doctoral Thesis, Universitat Politècnica de Catalunya.
Alberti, M. G.; Enfedaque, A.; Gálvez, J. (2015). Improving the reinforcement of polyolefin fiber reinforced concrete for infrastructure applications. Fibers, 3[4], 504-522. https://doi.org/10.3390/fib3040504
Alberti, M. G.; Enfedaque, A.; Gálvez, J.C. (2018). Polyolefin Fibres for the Reinforcement of Concrete, in Alkenes, InTech. https://doi.org/10.5772/intechopen.69318
EN 14651:2007+Al [2007] Test method for metallic fibre concrete. Measuring the flexural tensile strength (limit of proportionality (LOP), residual)
Wimpenny, D.; Angerer, W.; Cooper, T.; Bernard, S. (2009). The use of steel and synthetic fibres in concrete under extreme conditions. In 24th Biennial Conference of the Concrete Institute of Australia, Sydney, Australia (Vol. 17).
Enfedaque, A.; Alberti, M. G.; Paredes, J. A.; Gálvez, J. C. (2017). Interface properties of polyolefin fibres embedded in self-compacting concrete with a bond improver admixture. Theor. Appl. Fract. Mec., 90, 287-293. https://doi.org/10.1016/j.tafmec.2017.06.015
Wang, Y.; Backer, S.; Li, V. C. (1987). An experimental study of synthetic fibre reinforced cementitious composites. J. Mater. S., 22[12], 4281-4291. https://doi.org/10.1007/BF01132019
Ramakrishnan, V.; Sivakumar, C. (1999). Performance of Polyolefin Fiber Reinforced Concrete Under Cyclic Loading. ACI Special Publication, 186, 161-182.
Mindess, S.; Wang, N.; Rich, L. D.; Morgan, D. R. (1998). Impact resistance of polyolefin fibre reinforced precast units. Cem. Concr. Comp., 20[5], 387-392. https://doi.org/10.1016/S0958-9465(98)00016-X
Yan, L. ; Jenkins, C. H. ; Pendleton, R. L. (2000). Polyolefin fiber-reinforced concrete composites: Part I. Damping and frequency characteristics. Cem. Concr. Res., 30[3], 391-401. https://doi.org/10.1016/S0008-8846(99)00267-7
Trottier, J. F.; Mahoney, M.; Forgeron, D. (2002). Can synthetic fibers replace welded-wire mesh in slabs-on-ground? Concr. Int., 24[11], 59-68.
Cengiz, O.; Turanli, L. (2004). Comparative evaluation of steel mesh, steel fibre and high-performance polypropylene fibre reinforced shotcrete in panel test. Cem. Concr. Res., 34[8], 1357-1364. https://doi.org/10.1016/j.cemconres.2003.12.024
Bernard, E. S. (2004). Durability of cracked fibre reinforced shotcrete. In Shotcrete: more engineering developments (pp. 69-76). CRC Press. https://doi.org/10.1201/9780203023389
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C. (2018). A review on the assessment and prediction of the orientation and distribution of fibres for concrete. Compos. Part B-Eng., 151, 274-290. https://doi.org/10.1016/j.compositesb.2018.05.040
EN 12350-8:2010, Testing fresh concrete. Part 8: Self-compacting concrete. Slump-flow test, 2010.
EN 12350-9:2010, Testing fresh concrete. Part 9: Self-compacting concrete. V-funnel test, 2010.
Grünewald, S. (2004). Performance-based design of self-compacting fibre reinforced concrete. Delft University Press. Delft, The Netherlands. https://doi.org/10.1617/2912143624.030
EN 12390-3, "Testing hardened concrete. Part 3: Compressive strength of test specimens", 2009.
Boulekbache, B.; Hamrat, M.; Chemrouk, M.; Amziane, S. (2010). Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Construc. Build. Mat., 24[9], 1664-1671. https://doi.org/10.1016/j.conbuildmat.2010.02.025
Markeset, G. (1993). Failure of concrete under compressive strain gradients. Ph.D. Thesis, The Norwegian Institute of Technology, Trondheim.
EN 12390-6, Testing hardened concrete. Part 6. Tensile spliting strength of test specimens, 2009.
EN 12390-13, Testing hardened concrete - Part 13: Determination of secant modulus of elasticity in compression, 2013.
Altun, F.; Haktanir, T.; Ari, K. (2007). Effects of steel fiber addition on mechanical properties of concrete and RC beams. Construc. Build. Mat., 21[3], 654-661. https://doi.org/10.1016/j.conbuildmat.2005.12.006
Thomas, J.; Ramaswamy, A. (2007). Mechanical properties of steel fiber-reinforced concrete. J. Mater Civil Eng., 19[5], 385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
Yan, L.; Pendleton, R. L.; Jenkins, C. H. M. (1998). Interface morphologies in polyolefin fiber reinforced concrete composites. Compo. Part A-Appl. S., 29[5-6], 643-650. https://doi.org/10.1016/S1359-835X(97)00114-0
Lerch, J. O.; Bester, H. L.; Van Rooyen, A. S.; Combrinck, R.; de Villiers, W. I.; Boshoff, W. P. (2018). The effect of mixing on the performance of macro synthetic fibre reinforced concrete. Cem. Concr. Res., 103, 130-139. https://doi.org/10.1016/j.cemconres.2017.10.010
Cunha, V. M.; Barros, J. A.; Sena-Cruz, J. (2007). Pullout behaviour of hooked-end steel fibres in self-compacting concrete. Universidade do Minho. Departamento de Engenharia Civil (DEC).
Laranjeira, F. ; Molins, C. ; Aguado, A. (2010). Predicting the pullout response of inclined hooked steel fibers. Cem. Concr. Res., 40[10], 1471-1487. https://doi.org/10.1016/j.cemconres.2010.05.005
Døssland, Å. L. (2008). Fibre reinforcement in load carrying concrete structures: laboratory and field investigations compared with theory and finite element analysis. Ph.D. thesis. Norwegian University of Science and Technology, Department of Structural Engineering.
Fantilli, A. P.; Vallini, P. (2007). A cohesive interface model for the pullout of inclined steel fibers in cementitious matrixes. J. Adv. Concr. Technol., 5[2], 247-258. https://doi.org/10.3151/jact.5.247
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C.; Ferreras, A. (2016). Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes. Construc. Build. Mat., 112, 607-622. https://doi.org/10.1016/j.conbuildmat.2016.02.128
Robins, P. ; Austin, S. ; Jones, P. (2002). Pull-out behaviour of hooked steel fibres. Materials and structures, 35[7], 434- 442. https://doi.org/10.1007/BF02483148
ASTM C 1609/C 1690M-07, Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading), 2007.
Vandewalle, L.; Heirman, G.; Van Rickstal, F. (2008) Fibre orientation in self-compacting fibre reinforced concrete, in Proc. of the 7th Int. RILEM Symp. on Fibre Reinforced Concrete: Design and Applications (BEFIB2008).
Krenchel, H. (1978). Fibre spacing and specific fibre surface, in Testing and Test Methods of Fibre Cement Composites, Proceedings of the RILEM Symposium, 1978 (Construction Press Ltd., Lancaster 1978) 69-79.
Dupont, D.; Vandewalle, L. (2005). Distribution of steel fibres in rectangular sections. Cem. Concr. Comp., 27[3], 391-398. https://doi.org/10.1016/j.cemconcomp.2004.03.005
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C. (2017). On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete. Cem. Concr. Comp., 77, 29-48. https://doi.org/10.1016/j.cemconcomp.2016.11.008
Soroushian, P.; Lee, C. D. (1990). Distribution and orientation of fibers in steel fiber reinforced concrete. Mater. J., 87[5], 433-439. https://doi.org/10.14359/1803
Lee, C.; Kim, H. (2010). Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete. Cem. Concr. Res., 40[5], 810-819. https://doi.org/10.1016/j.cemconres.2009.11.009
Laranjeira, F.; Aguado, A.; Molins, C.; Grünewald, S.; Walraven, J.; Cavalaro, S. (2012). Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem. Concr. Res., 42[6], 752-768. https://doi.org/10.1016/j.cemconres.2012.02.013
Rao, C. K. (1979); Effectiveness of random fibres in composites. Cem. Concr. Res., 9[6], 685-693. https://doi.org/10.1016/0008-8846(79)90063-2
Giaccio, G.; Tobes, J. M.; Zerbino, R. (2008). Use of small beams to obtain design parameters of fibre reinforced concrete. Cem. Concr. Comp., 30[4], 297-306. https://doi.org/10.1016/j.cemconcomp.2007.10.004
Alberti, M. G.; Enfedaque, A.; Gálvez, J. C.; Cánovas, M. F.; Osorio, I. R. (2014). Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Mater. Design., 60, 57-65. https://doi.org/10.1016/j.matdes.2014.03.050
Zerbino, R.; Tobes, J. M.; Bossio, M. E.; Giaccio, G. (2012). On the orientation of fibres in structural members fabricated with self compacting fibre reinforced concrete. Cem. Concr. Comp., 34[2], 191-200. https://doi.org/10.1016/j.cemconcomp.2011.09.005
Torrijos, M. C.; Barragán, B. E.; Zerbino, R. L. (2010). Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes. Construc. Build. Mat., 24[6], 1078-1085. https://doi.org/10.1016/j.conbuildmat.2009.11.008
Alani, A. M.; Beckett, D. (2013). Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Construc. Build. Mat., 41, 335-344. https://doi.org/10.1016/j.conbuildmat.2012.11.043
Blanco, A.; Pujadas, P.; De la Fuente, A.; Cavalaro, S.; Aguado, A. (2013). Application of constitutive models in European codes to RC-FRC. Construc. Build. Mat., 40, 246-259. https://doi.org/10.1016/j.conbuildmat.2012.09.096
Yang, J. M.; Min, K. H.; Shin, H. O.; Yoon, Y. S. (2012). Effect of steel and synthetic fibers on flexural behavior of high-strength concrete beams reinforced with FRP bars. Compos. Part B-Eng., 43[3], 1077-1086. https://doi.org/10.1016/j.compositesb.2012.01.044
Yin, S.; Tuladhar, R.; Collister, T.; Combe, M.; Sivakugan, N.; Deng, Z. (2015). Post-cracking performance of recycled polypropylene fibre in concrete. Construc. Build. Mat., 101, 1069- 1077. https://doi.org/10.1016/j.conbuildmat.2015.10.056
Buratti, N.; Mazzotti, C.; Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construc. Build. Mat., 25[5], 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022
Erdem, S.; Dawson, A. R.; Thom, N. H. (2011). Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macro fibres. Construc. Build. Mat., 25[10], 4025-4036. https://doi.org/10.1016/j.conbuildmat.2011.04.037
Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R. N. (2010). Experimental evaluation of fiber reinforced concrete fracture properties. Compos. Part B-Eng., 41[1], 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002
Alberti, M.G.; Enfedaque, A.; Gálvez, J. C. (2016). Polyolefin-based fibres and combination with steel fibres: seeking a more sustainable Struct. Concrete.. In II International Conference on Concrete Sustainability ICCS16, Madrid.
DBV, Technologie des Stahlfaser-betons und Stahlfaserprit, 1992.
DBV, Merkblatt StahlfaserbetonDeutsche Beton Vereins, 2001.
European Committee for Standardization (2004). "Eurocode 2: design of concrete structures-part 1-1: general rules and rules for buildings".
Hillerborg, A.; Modéer, M.; Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res., 6[6], 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
de Montaignac, R.; Massicotte, B.; Charron, J. P. (2012). Design of SFRC structural elements: flexural behaviour prediction. Mater. Struc., 45[4], 623-636. https://doi.org/10.1617/s11527-011-9785-y
Ulfkjær, J. P; Krenk, S.; Brincker, R. (1995). Analytical model for fictitious crack propagation in concrete beams. J. Eng. Mech., 121[1], 7-15. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:1(7)
Massicotte, B. (2004). Implementing SFRC design into North American codes: application to a building floor. Invited paper to the International workshop on the advanced in fibre reinforced concrete, Bergamo, Italia, September (pp. 24-25).
AFGC-SETRA, Ultra high performance fibre-reinforced concretes, interim recommendations, 2002.
Alberti, M.G.; Enfedaque, A.; Gálvez, J. C.; Reyes, E. (2017). Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach. Compos. Part B-Eng., 111, 200-210. https://doi.org/10.1016/j.compositesb.2016.11.052
Li, V. C.; Ward, R.; Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Mat. J., vol. 89[5], 499-508. https://doi.org/10.14359/1822
Barragán, B. (2002). Failure and toughness of steel fiber reinforced concrete under tension and shear, Doctoral Thesis: Universitat Politècnica de Catalunya.
Voo, Y. L.; Poon, W. K.; Foster, S. J. (2010). Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. J. Struct. Eng., 136[11], 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
Cuenca, E.; Serna, P. (2010). Shear behavior of Self- Compacting concrete and Fiber-Reinforced concrete push-off specimens. Design, Production and Placement of Self-Consolidating Concrete (pp. 429-438). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9664-7_36
Jongvivatsakul, P.; Attachaiyawuth, A.; Pansuk, W. (2016). A crack-shear slip model of high-strength steel fiber-reinforced concrete based on a push-off test. Construc. Build. Mat., 126, 924-935. https://doi.org/10.1016/j.conbuildmat.2016.09.080
Echegaray, J. (2014). Upgrading the push-off test to analyse the contribution of steel fibre on shear. PhD thesis, Universidad Politécnica de Valencia.
Picazo, A.; Gálvez, J. C.; Alberti, M. G.; Enfedaque, A. (2018). Assessment of the shear behaviour of polyolefin fibre reinforced concrete and verification by means of digital image correlation. Construc. Build. Mat., 181, 565-578. https://doi.org/10.1016/j.conbuildmat.2018.05.235
Serna Ros, P.; Martí Vargas; J. R., Bossio, M. E.; Zerbino, R. (2016). Creep and residual properties of cracked macro-synthetic fibre reinforced concretes. Mag. Concrete. Res., 68[4], 197-207. https://doi.org/10.1680/macr.15.00111
Kurtz, S.; Balaguru, P. (2000). Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cem. Concr. Res., 30[2], 183-190. https://doi.org/10.1016/S0008-8846(99)00228-8
Bernard, E. S. (Ed.). (2004). Shotcrete: More Engineering Developments: Proceedings of the Second International Conference on Engineering Developments in Shotcrete, October 2004, Cairns, Queensland, Australia. Taylor & Francis.
Bernard, E. S. (2010). Influence of Fiber Type on Creep Deformation of Cracked Fiber-Reinforced Shotcrete Panels. ACI Mat. J., 107[5], 474-480. https://doi.org/10.14359/51663967
Boulekbache, B.; Hamrat, M.; Chemrouk, M.; Amziane, S. (2016). Flexural behaviour of steel fibre-reinforced concrete under cyclic loading. Construc. Build. Mat., 126, 253-262. https://doi.org/10.1016/j.conbuildmat.2016.09.035
Goel, S.; Singh, S. P.; Singh, P. (2012). Flexural fatigue strength and failure probability of self compacting fibre reinforced concrete beams. Eng. Struct., 40, 131-140. https://doi.org/10.1016/j.engstruct.2012.02.035
Alberti, M. G.; Gálvez, J. C.; Enfedaque, A.; Carmona, A.; Valverde, C.; Pardo, G. (2018). Use of Steel and Polyolefin Fibres in the La Canda Tunnels: Applying MIVES for Assessing Sustainability Evaluation. Sustainability, 10[12], 4765. https://doi.org/10.3390/su10124765
Enfedaque, A.; Alberti, M.G.; Gálvez, J.C.; Rivera, M.; Simón-Talero, J. (2018). Can Polyolefin Fibre Reinforced Concrete Improve the Sustainability of a Flyover Bridge? Sustainability, 10[12], 4583. https://doi.org/10.3390/su10124583
EN 12350-8:2010. Testing fresh concrete. Part 8: Self-compacting concrete. Slump-flow test; 2010.
EN 12350-9:2010. In testing fresh concrete. Part 9: Self-compacting concrete. V-funnel test; 2010.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.