Shrinkage behaviour and related corrosion performance of low-pH cementitious materials based on OPC or CAC


  • J. L. García-Calvo Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • M. Sánchez Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • L. Fernández-Luco INTECIN-University of Buenos Aires
  • M. C. Alonso Eduardo Torroja Institute for Construction Science, IETcc-CSIC



Radioactive wastes, Mixture proportion, Durability, Deformation, Corrosion


Prior to using low-pH cementitious materials in underground repositories for high level waste, the characteristics determining their long-term durability must be analysed in depth. In this sense, different shrinkage tests have been made on mortar and concrete specimens using low-pH cement formulations based on ordinary portland cement (OPC) or calcium aluminate cement (CAC), with high mineral admixtures contents. They showed similar autogenous shrinkage than samples without mineral admixtures but higher drying shrinkage when materials based on OPC with high silica fume contents were considered. Besides, as the use of reinforced concrete could be required in underground repositories, the susceptibility of reinforcement to corrosion when using low-pH cementitious materials based on OPC was analyzed, considering carbon steel and galvanized steel. In the formers corrosion was detected due to the low pore solution pH but any problem was detected when galvanized reinforcement were used.


Download data is not yet available.


1. Gray, M.N.; Shenton, B.S. (1998) For better concrete, take out some of the cement. In: Proc. 6th ACI/CANMET Symposium on the Durability of Concrete, Bangkok, Thailand.

2. Iriya, K.; Matsui, A.; Mihara, M. (1999) Study on applicability of HFSC for radioactive waste repositories. In: Radioactive Waste Management and Environmental Remediation, ASME Conference, Nagoya, Japan, 16-30.

3. Cau Dit Coumes, C.; Courtois, S.; Nectoux, D.; Leclerq, S.; Bourbon, X. (2006) Formulating a low-alkalinity, highresistance and low-heat concrete for radioactive waste repositories. Cem. Concr. Res. 36, 2152-2163.

4. Yamamoto, T.; Imoto, H.; Ueda, H.; Hironaga, M. (2007) Leaching alteration of cementitious materials and release of organic additives. In: Proc. R&D on Low-pH Cement for a Geological Repository, 3rd Workshop, June 13-14 Paris, France, 52-62.

5. Codina, M.; Cau-dit-Coumes, C.; Le Bescop, P.; Verdier, J.; Ollivier, J.P. (2008) Design and characterization of low-heat and low-alkalinity cements. Cem. Concr. Res. 38, 437-448.

6. García Calvo, J.L.; Hidalgo, A.; Alonso, C.; Fernández Luco, L. (2010) Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cem. Concr. Res. 40, 1290-1297.

7. García Calvo, J.L.; Alonso, M.C.; Hidalgo, A.; Fernández Luco, L.; Flor-Laguna, V. (2013) Development of low-pH cementitious materials based on CAC for HLW repositories: Long-term hydration and resistance against groundwater aggression. Cem. Concr. Res. 51, 67-77.

8. Mokarem, D.W. (2002) Development of concrete shrinkage performance specifications. Thesis (PhD). Faculty of the Virginia Polytechnic Institute and State University.

9. Ossa, M.; David, J. (1992) The effect of pozzolan additions on the shrinkage of cement pastes and mortars during their first hours of age. Mater. Construcc. 42 [225], 37-63.

10. Wiegrink, K.; Marikunte, S.; Shah, S.P. (1996) Shrinkage Cracking of High Strength Concrete. ACI Materials Journal, 93, 409-415.

11. Tazawa, E.; Yonekura, A. (1986) Drying shrinkage and creep of concrete with condensed silica fume. In: Proceedings of the 2nd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Madrid, Spain, ACI Publication SP A1, 903-921.

12. Haque, M.N. (1996) Strength Development and Drying Shrinkage of High Strength Concretes. Cem. Concr. Comp. 18, 333-342.

13. Tangtermsirikul, S.; Sudsangium, T.; Nimityongsakul, P. (1995) Class C Fly Ash as a Shrinkage Reducer for Cement Paste. In: Proceedings of the 5th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Milwaukee, Wisconsin, USA, 1, 385-401.

14. Zhou, M.Z.; Slater, J.R.; Wavell S.E.; Oladiran, O. (2012) Effects of PFA and GGBS on early-ages engineering properties of Portland cement systems. J. Adv. Concr. Tech. 10, 74-85.

15. Gebler, S. H.; Klieger P. (1986) Effect of Fly Ash on Physical Properties of Concrete, RD089, Portland Cement Association, Skokie, IL.

16. Ugur, K.N.; Turker, F. (2007) Effect of environmental conditions on the properties of concretes with different cement types. Constr. Build. Mat. 21, 634-645.

17. Persson, B. (1998) Experimental studies on shrinkage of high-performance concrete. Cem. Concr. Res. 28, 1023-36.

18. García Calvo, J.L.; Sánchez, M.; Alonso, M.C.; Hidalgo, A.; García, J. (2013) Study of the microstructure evolution of low-pH cements based on Ordinary Portland Cement (OPC) by Mid- and Near-Infrared spectroscopy, and their influence on corrosion of steel reinforcement. Materials. 6, 2508-2521.

19. Alonso, M.C.; García Calvo, J.L.; Walker, C.; Naito, M.; Pettersson, S.; Puigdomenech, I.; Cu-ado, M.A.; Vuorio, M.; Weber, H.; Ueda, H.; Fujisaki, K. (2012) Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials. SKB R-12-02. Stockholm, SKB. Svensk Kärnbränslehantering AB. Swedish Nuclear Fuel and Waste Management.

20. Kantro, D.L.; Brunauer, S.; Weise, C.H. (1962) Development of surface in the hydration of calcium silicates II. Extention of investigations to earlier and later stages of hydration. J. Phys. Chem. 66, 1804-1809.

21. Lee, S.H.; Kim, H.J.; Sakai, E.; Daimon, M. (2003) Effect of particle size distribution of fly ash-cement system on the fluidity of cement pastes. Cem. Concr. Res. 33, 763-768.

22. Megat Johari, M.A.; Brooks, J.J.; Kabir, S.; Rivard, P. (2011) Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mat. 25, 2639-2648.

23. Zhang, M.H.; Tam, C.T.; Leow, M.P. (2003) Effect of waterto- cementitious materials ratio and silica fume on the autogenous shrinkage of concrete. Cem. Concr. Res. 33, 1687-1694.

24. Aïtcin, P.C. (2003) The durability characteristics of high performance concrete: a review. Cem. Concr. Comp. 25, 409-20.

25. Appa Rao, G. (2001) Long-term drying shrinkage of mortar- influence of silica fume and size of fine aggregate. Cem. Concr. Res. 31, 171-175.

26. Whiting, D.A.; Detwler, R.J.; Lagergren, E.S. (2000) Cracking tendency and drying shrinkage of silica fume concrete for bridge deck applications. ACI Materials Journal. 97, 71-77.

27. Alsayed, S.H. (1998) Influence of superplasticizer, plasticizer, and silica fume on the drying shrinkage of highstrength concrete subjected to hot-dry field conditions. Cem. Concr. Res. 28, 1045-1415.

28. Castro-Borges, P.; Balancán-Zapata, M.; López-González, A. (2013) Analysis of Tools to Evaluate Chloride Threshold for Corrosion Onset of Reinforced Concrete in Tropical Marine Environment of Yucatán, México. J. Chem. 1.

29. Andrade, C.; Rebolledo, N.; Pedrosa, F. (2012) From the instantaneous corrosion rate to a representative value. In: Concrete Repair, Rehabilitation and Retrofitting III - Alexander et al. (eds), London, 59-63.

30. Sánchez, M.; Gregorio, J.; Alonso, C.; García-Jare-o, J.J.; Takenouti, H.; Vicente, F. (2007) Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim. Acta. 52, 7634-7641.

31. Andrade, C.; Alonso, C. (2003) Electrochemical aspects of galvanized reinforcement corrosion. In: S.R. Yeomans, Galvanized steel reinforcement in concrete. Elsevier, 111-144. PMid:12597709



How to Cite

García-Calvo, J. L., Sánchez, M., Fernández-Luco, L., & Alonso, M. C. (2016). Shrinkage behaviour and related corrosion performance of low-pH cementitious materials based on OPC or CAC. Materiales De Construcción, 66(321), e079.



Research Articles