Fenómenos de retracción y comportamiento frente a la corrosión de materiales base cemento de bajo pH basados en OPC o CAC

Autores/as

  • J. L. García-Calvo Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • M. Sánchez Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • L. Fernández-Luco INTECIN-University of Buenos Aires
  • M. C. Alonso Eduardo Torroja Institute for Construction Science, IETcc-CSIC

DOI:

https://doi.org/10.3989/mc.2016.02615

Palabras clave:

Residuos radioactivos, Proporción de mezcla, Durabilidad, Deformación, Corrosión

Resumen


Previo al empleo de materiales con cementos de bajo pH en almacenamientos geológicos profundos (AGP) de residuos radiactivos de alta actividad, características relacionadas con su durabilidad a largo plazo deben ser verificadas. Así, su estabilidad volumétrica se ha analizado en morteros y hormigones de bajo pH basados en OPC o CAC, con elevados contenidos de adiciones minerales. Estos presentaron retracciones autógenas similares a las medidas en materiales convencionales, pero retracciones por secado mayores en los basados en OPC y altos contenidos de humo de sílice. Dado que en zonas de los AGP podría emplearse hormigón armado, también se evaluó la susceptibilidad a la corrosión de aceros al carbono y aceros galvanizados en materiales de bajo pH basados en OPC. Se detectó un inicio temprano de corrosión en los primeros debido al bajo pH presente en el fluido de los poros de estos materiales, sin detectarse problemas al emplear aceros galvanizados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Gray, M.N.; Shenton, B.S. (1998) For better concrete, take out some of the cement. In: Proc. 6th ACI/CANMET Symposium on the Durability of Concrete, Bangkok, Thailand.

2. Iriya, K.; Matsui, A.; Mihara, M. (1999) Study on applicability of HFSC for radioactive waste repositories. In: Radioactive Waste Management and Environmental Remediation, ASME Conference, Nagoya, Japan, 16-30.

3. Cau Dit Coumes, C.; Courtois, S.; Nectoux, D.; Leclerq, S.; Bourbon, X. (2006) Formulating a low-alkalinity, highresistance and low-heat concrete for radioactive waste repositories. Cem. Concr. Res. 36, 2152-2163. http://dx.doi.org/10.1016/j.cemconres.2006.10.005

4. Yamamoto, T.; Imoto, H.; Ueda, H.; Hironaga, M. (2007) Leaching alteration of cementitious materials and release of organic additives. In: Proc. R&D on Low-pH Cement for a Geological Repository, 3rd Workshop, June 13-14 Paris, France, 52-62.

5. Codina, M.; Cau-dit-Coumes, C.; Le Bescop, P.; Verdier, J.; Ollivier, J.P. (2008) Design and characterization of low-heat and low-alkalinity cements. Cem. Concr. Res. 38, 437-448. http://dx.doi.org/10.1016/j.cemconres.2007.12.002

6. García Calvo, J.L.; Hidalgo, A.; Alonso, C.; Fernández Luco, L. (2010) Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cem. Concr. Res. 40, 1290-1297. http://dx.doi.org/10.1016/j.cemconres.2009.11.008

7. García Calvo, J.L.; Alonso, M.C.; Hidalgo, A.; Fernández Luco, L.; Flor-Laguna, V. (2013) Development of low-pH cementitious materials based on CAC for HLW repositories: Long-term hydration and resistance against groundwater aggression. Cem. Concr. Res. 51, 67-77. http://dx.doi.org/10.1016/j.cemconres.2013.04.008

8. Mokarem, D.W. (2002) Development of concrete shrinkage performance specifications. Thesis (PhD). Faculty of the Virginia Polytechnic Institute and State University.

9. Ossa, M.; David, J. (1992) The effect of pozzolan additions on the shrinkage of cement pastes and mortars during their first hours of age. Mater. Construcc. 42 [225], 37-63. http://dx.doi.org/10.3989/mc.1992.v42.i225.720

10. Wiegrink, K.; Marikunte, S.; Shah, S.P. (1996) Shrinkage Cracking of High Strength Concrete. ACI Materials Journal, 93, 409-415.

11. Tazawa, E.; Yonekura, A. (1986) Drying shrinkage and creep of concrete with condensed silica fume. In: Proceedings of the 2nd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Madrid, Spain, ACI Publication SP A1, 903-921.

12. Haque, M.N. (1996) Strength Development and Drying Shrinkage of High Strength Concretes. Cem. Concr. Comp. 18, 333-342. http://dx.doi.org/10.1016/0958-9465(96)00024-8

13. Tangtermsirikul, S.; Sudsangium, T.; Nimityongsakul, P. (1995) Class C Fly Ash as a Shrinkage Reducer for Cement Paste. In: Proceedings of the 5th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Milwaukee, Wisconsin, USA, 1, 385-401.

14. Zhou, M.Z.; Slater, J.R.; Wavell S.E.; Oladiran, O. (2012) Effects of PFA and GGBS on early-ages engineering properties of Portland cement systems. J. Adv. Concr. Tech. 10, 74-85. http://dx.doi.org/10.3151/jact.10.74

15. Gebler, S. H.; Klieger P. (1986) Effect of Fly Ash on Physical Properties of Concrete, RD089, Portland Cement Association, Skokie, IL.

16. Ugur, K.N.; Turker, F. (2007) Effect of environmental conditions on the properties of concretes with different cement types. Constr. Build. Mat. 21, 634-645. http://dx.doi.org/10.1016/j.conbuildmat.2005.12.004

17. Persson, B. (1998) Experimental studies on shrinkage of high-performance concrete. Cem. Concr. Res. 28, 1023-36. http://dx.doi.org/10.1016/S0008-8846(98)00068-4

18. García Calvo, J.L.; Sánchez, M.; Alonso, M.C.; Hidalgo, A.; García, J. (2013) Study of the microstructure evolution of low-pH cements based on Ordinary Portland Cement (OPC) by Mid- and Near-Infrared spectroscopy, and their influence on corrosion of steel reinforcement. Materials. 6, 2508-2521. http://dx.doi.org/10.3390/ma6062508

19. Alonso, M.C.; García Calvo, J.L.; Walker, C.; Naito, M.; Pettersson, S.; Puigdomenech, I.; Cu-ado, M.A.; Vuorio, M.; Weber, H.; Ueda, H.; Fujisaki, K. (2012) Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials. SKB R-12-02. Stockholm, SKB. Svensk Kärnbränslehantering AB. Swedish Nuclear Fuel and Waste Management.

20. Kantro, D.L.; Brunauer, S.; Weise, C.H. (1962) Development of surface in the hydration of calcium silicates II. Extention of investigations to earlier and later stages of hydration. J. Phys. Chem. 66, 1804-1809. http://dx.doi.org/10.1021/j100816a007

21. Lee, S.H.; Kim, H.J.; Sakai, E.; Daimon, M. (2003) Effect of particle size distribution of fly ash-cement system on the fluidity of cement pastes. Cem. Concr. Res. 33, 763-768. http://dx.doi.org/10.1016/S0008-8846(02)01054-2

22. Megat Johari, M.A.; Brooks, J.J.; Kabir, S.; Rivard, P. (2011) Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mat. 25, 2639-2648. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.013

23. Zhang, M.H.; Tam, C.T.; Leow, M.P. (2003) Effect of waterto- cementitious materials ratio and silica fume on the autogenous shrinkage of concrete. Cem. Concr. Res. 33, 1687-1694. http://dx.doi.org/10.1016/S0008-8846(03)00149-2

24. Aïtcin, P.C. (2003) The durability characteristics of high performance concrete: a review. Cem. Concr. Comp. 25, 409-20. http://dx.doi.org/10.1016/S0958-9465(02)00081-1

25. Appa Rao, G. (2001) Long-term drying shrinkage of mortar- influence of silica fume and size of fine aggregate. Cem. Concr. Res. 31, 171-175. http://dx.doi.org/10.1016/S0008-8846(00)00347-1

26. Whiting, D.A.; Detwler, R.J.; Lagergren, E.S. (2000) Cracking tendency and drying shrinkage of silica fume concrete for bridge deck applications. ACI Materials Journal. 97, 71-77.

27. Alsayed, S.H. (1998) Influence of superplasticizer, plasticizer, and silica fume on the drying shrinkage of highstrength concrete subjected to hot-dry field conditions. Cem. Concr. Res. 28, 1045-1415. http://dx.doi.org/10.1016/S0008-8846(98)00102-1

28. Castro-Borges, P.; Balancán-Zapata, M.; López-González, A. (2013) Analysis of Tools to Evaluate Chloride Threshold for Corrosion Onset of Reinforced Concrete in Tropical Marine Environment of Yucatán, México. J. Chem. 1. http://dx.doi.org/10.1155/2013/208619

29. Andrade, C.; Rebolledo, N.; Pedrosa, F. (2012) From the instantaneous corrosion rate to a representative value. In: Concrete Repair, Rehabilitation and Retrofitting III - Alexander et al. (eds), London, 59-63.

30. Sánchez, M.; Gregorio, J.; Alonso, C.; García-Jare-o, J.J.; Takenouti, H.; Vicente, F. (2007) Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim. Acta. 52, 7634-7641. http://dx.doi.org/10.1016/j.electacta.2007.02.012

31. Andrade, C.; Alonso, C. (2003) Electrochemical aspects of galvanized reinforcement corrosion. In: S.R. Yeomans, Galvanized steel reinforcement in concrete. Elsevier, 111-144. PMid:12597709

Publicado

2016-03-30

Cómo citar

García-Calvo, J. L., Sánchez, M., Fernández-Luco, L., & Alonso, M. C. (2016). Fenómenos de retracción y comportamiento frente a la corrosión de materiales base cemento de bajo pH basados en OPC o CAC. Materiales De Construcción, 66(321), e079. https://doi.org/10.3989/mc.2016.02615

Número

Sección

Artículos