Prestaciones físico-mecánicas en cementos ternarios dependiendo de la sinergia entre las adiciones minerales y el cemento Portland
DOI:
https://doi.org/10.3989/mc.2016.10815Palabras clave:
Cementos con adiciones, Hidratación, Propiedades físicas, , Propiedades mecánicasResumen
El artículo aborda la interacción sinérgica de las adiciones minerales en el rendimiento físico-mecánico de mezclas ternarias preparadas con dos tipos de cemento Portland (PC). Se analiza desde las edades tempranas la contribución en los tiempos de fraguado y en el flujo de calor liberado. Las adiciones minerales usadas son escoria de alto horno, ceniza volante y filler calizo. Los PC utilizados se han seleccionado en base al contenido en C3A y álcalis. Mezclas formuladas con PC de bajo contenido en C3A y álcalis mantienen desde el inicio una ganancia similar en las prestaciones mecánicas y un refinamiento en el tamaño de poro atribuido a la aceleración inducida por las adiciones minerales en la hidratación inicial del PC. En cambio, mezclas ternarias con un PC con mayor contenido en C3A y álcalis tienen más lenta generación de resistencias mecánicas iniciales, pero mayores a medida que avanza la hidratación.
Descargas
Citas
The European Cement Association. http://www.cembureau.be/sites/default/files/World%20Cement%20production_2.pdf
Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. (2011) Sustainable cement production-present and future. Cem. Concr. Res. 41, 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019
Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38, 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008
Deja, J.; Uliasz-Bochencyzk, A.; Mokrycki, E. (2010) CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control 4, 583–588. https://doi.org/10.1016/j.ijggc.2010.02.002
De Weerdt, K.; Kjellsen, K.O.; Sellevold, E.; Justnes, H. (2011) Synergy between fly ash and limestone powder in ternary cements. Cem. Concr. Comp. 33, 30–38. https://doi.org/10.1016/j.cemconcomp.2010.09.006
Roy, D.M, (1999) Alkali-activated cements Opportunities and challenges. Cem. Concr. Res. 29, 249–254. https://doi.org/10.1016/S0008-8846(98)00093-3
Puertas, F.; Fernández-Jiménez, A. (2003) Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Comp. 25, 287–292. https://doi.org/10.1016/S0958-9465(02)00059-8
Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterization. Cem. Concr. Res. 57, 95–104. https://doi.org/10.1016/j.cemconres.2013.12.005
Sanjuán, M.Á. (2013) Los cementos ternarios y visión general del futuro de las normas de especificaciones de cementos comunes, Madrid. https://www.ieca.es/Uploads/ docs/3_Los_cementos_ternarios_y_visi%F3n_general_del_futuro.pdf.
Wu, Z.; Naik, T.R. (2002) Properties of concrete produced from multicomponent blended cements. Cem. Concr. Res. 32, 1937–1942. https://doi.org/10.1016/S0008-8846(02)00907-9
Carrasco, M.F.; Menéndez, G.; Bonavetti, V.; Irassar, E.F. (2005) Strength optimization of "tailor-made cement" with limestone filler and blast furnace slag. Cem. Concr. Res. 35, 1324–1331. https://doi.org/10.1016/j.cemconres.2004.09.023
Bonavetti, V.; Donza, H.; Menéndez, G.; Cabrera, O.; Irassar, E.F. (2003) Limestone filler cement in low w/c concrete: A rational use of energy, Cem. Concr. Res. 33, 865–871. https://doi.org/10.1016/s0008-8846(02)01087-6
Ortega, J.M.; Sánchez, I.; Climent, M.Á. (2013) Influence of different curing conditions on the pore structure and the early age properties of mortars with fly ash and blastfurnace slag. Mater. Construcc. 63, 219–234.
Bijen, J. (1996) Benefits of slag and fly ash. Constr. Build. Mat 10, 309–314. https://doi.org/10.1016/0950-0618(95)00014-3
Menéndez, G.; Bonavetti, V.; Irassar, E.F. (2003) Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Composites 25, 61–67. https://doi.org/10.1016/S0958-9465(01)00056-7
Hale, W.M.; Freyne, S.F.; Bush Jr., T.D.; Russell, B.W. (2008) Properties of concrete mixtures containing slag cement and fly ash for use in transportation structures. Constr. Build. Mat. 22, 1990–2000. https://doi.org/10.1016/j.conbuildmat.2007.07.004
Ghrici, M.; Kenai, S.; Said-Mansour, M. (2007) Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Composites 29, 542–549. https://doi.org/10.1016/j.cemconcomp.2007.04.009
Yilmaz, B.; Olgun, A. (2008) Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone. Cem. Concr. Comp. 30, 194–201. https://doi.org/10.1016/j.cemconcomp.2007.07.002
Hoshino, S.; Yamada, K.; Hirao, H. (2006) XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. Journal of Advanced Concrete Technology 4, 357–367. https://doi.org/10.3151/jact.4.357
Elkhadiri, I.; Diouri, A.; Boukhari, A.; Aride, J.; Puertas, F. (2002) Mechanical behaviour of variuos mortars made by combined fly ash and limestone in Moroccan Portland cement. Cem. Concr. Res. 32, 1597–1603. https://doi.org/10.1016/S0008-8846(02)00834-7
Fernández, Á.; García Calvo, J.L.; Alonso, M.C. (2015) The Ordinary Portland Cement composition to optimize the synergies of mineral additions of ternary binders in hydration process. Cem. Concr. Comp., in evaluation.
De Weerdt, K.; Ben Haha, M.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash, Cem Concr. Res. 41, 279–291. https://doi.org/10.1016/j.cemconres.2010.11.014
Alonso, M.C.; García Calvo, J.L.; Sánchez, M.; Fernández, Á. (2012) Ternary mixes with high mineral additions contents and corrosion related properties. Materials and Corrosion 63, 1078–1086. https://doi.org/10.1002/maco.201206654
Dehuai, W.; Zhaoyuan, C. (1997) On predicting compressive strengths of mortars with ternary blends of cement, GGBFS and Fly Ash. Cem. Concr. Res. 27, 487–493. https://doi.org/10.1016/S0008-8846(97)00039-2
Schöler, A.; Lothenbach, B.; Winnefeld, F.; Zajac, M. (2015) Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem. Concr. Comp. 55, 374–382. https://doi.org/10.1016/j.cemconcomp.2014.10.001
Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. (2005) Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Comp. 27, 425–428. https://doi.org/10.1016/j.cemconcomp.2004.07.003
Bogue, R.H (1929). Calculation of the compounds in Portland cement. Industrial and Engineering Chemistry 1, 192–197. https://doi.org/10.1021/ac50068a006
Rahhal, V.; Talero, R. (2008) Calorimetry of Portland cement with metakaolins, quartz and gypsum additions. J. Therm. Anal. Calorim. 91, 825–834. https://doi.org/10.1007/s10973-006-8250-6
Baert, G.; Hoste, S.; De Schutter, G.; De Belie, N. (2008) Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. J. Therm. Anal. Calorim. 94, 485–492. https://doi.org/10.1007/s10973-007-8787-z
Oey, T.; Kumar, A.; Bullard, J.W.; Neithalath, N.; Sant, G. (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates, J. Am. Ceram. Soc. 96, 1978–1990. https://doi.org/10.1111/jace.12264
Berodier, E.; Scrivener, K. (2014) Understanding the filler effect on the nucleation and growth of C-S-H, J. Am. Ceram. Soc. 97, 3764–3773. https://doi.org/10.1111/jace.13177
Mounanga, P.; Khokhar, M.I.A.; El Hachem, R.; Loukili, A. (2011) Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler. Materials and Structures 44, 437–453. https://doi.org/10.1617/s11527-010-9637-1
Torrenti, J.M.; Bendboudjema, F. (2005) Mechanical threshold of cementitious materials at early age, Materialsand Structures 38, 299–304. https://doi.org/10.1007/BF02479294
Gesoglu, M.; Özbay, E. (2007) Effect of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems. Materials and Structures 40, 923–937. https://doi.org/10.1617/s11527-007-9242-0
Brooks, J.J.; Megat Johari, M.A.; Mazloom, M. (2000) Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Comp. 22, 293–301. https://doi.org/10.1016/S0958-9465(00)00025-1
Sáez del Bosque, I.F.; Martínez-Ramírez, S.; Blanco-Varela, M.T. (2015). Calorimetric study of the early stages of the nanosilica-tricalcium silicate hydration. Effect of the temperature. Mater. Construcc. 65.
Gawlicki, M.; Nocún-Wczelik, W.; Bak, L. (2010) Calorimetry in the studies of cement hydration. Setting and hardening of Portland cement-calcium aluminate cement mixtures. J Therm Anal Calorim 100, 571–576. https://doi.org/10.1007/s10973-009-0158-5
D. Jansen, F. Goetz-Neunhoeffer, B. Lothenbach, J. Neubauer (2012) The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD. Cem Concr Res, 42, 134–138. https://doi.org/10.1016/j.cemconres.2011.09.001
Ballim, Y.; Graham, P.C. (2009) The effects of supplementary cementing materials in modifying the heat of hydration of concrete. Materials and Structures 42, 803–811. https://doi.org/10.1617/s11527-008-9425-3
Soroka, I.; Stern, N. (1977) The effect of fillers on strength of cement mortars. Cem. Concr. Res. 7, 449–456. https://doi.org/10.1016/0008-8846(77)90073-4
Berry, E.E.; Hemmings, R.T.; Cornelius, B.J. (1990) Mechanisms of hydration in high volume fly ash pastes and mortars. Cem. Concr. Comp. 12, 253–261. https://doi.org/10.1016/0958-9465(90)90004-H
Güneyisi, E.; Gesoglu, M. (2008) Properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and metakaolin. Materials and Structures 41, 1519–1531. https://doi.org/10.1617/s11527-007-9345-7
Voglis, N.; Kakali, G.; Chaniotakis, E.; Tsivilis, S. (2005) Portland-limestone cement, their properties and hydration compared to those of other composite cement. Cem. Concr. Comp. 27, 191–196. https://doi.org/10.1016/j.cemconcomp.2004.02.006
Feldman, R.F.; Carette, G.G.; Malhotra, V.M. (1990) Studies on of development of physical and mechanical properties of high-volume fly ash-cement pastes. Cem. Concr. Comp. 12, 245–251. https://doi.org/10.1016/0958-9465(90)90003-G
Ben Haha, M.; De Weerdt, K.; Lothenbach, B. (2010) Quantification of the degree of reaction of fly ash. Cem. Concr. Res. 40, 1620–1629. https://doi.org/10.1016/j.cemconres.2010.07.004
Deschner, F.; Münch, B.; Winnefeld, F.; Lothenbach, B. (2013) Quantification of fly ash in hydrated blended Portland cement pastes by backscattered electron imaging. Journal of Microscopy 251, 188–204. https://doi.org/10.1111/jmi.12061 PMid:23789966
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.