Comparación de sensores PZT y FBG para la detección de despegues en vigas de hormigón armado reforzadas externamente con bandas de CFRP y sometidas a cargas de flexión

Autores/as

  • E. Sevillano Department of Structural Mechanics. Technical University of Madrid
  • R. Sun Department of Structural Mechanics. Technical University of Madrid
  • R. Perera Department of Structural Mechanics. Technical University of Madrid
  • A. Arteaga Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • A. de Diego Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • D. Cisneros Eduardo Torroja Institute for Construction Science, IETcc-CSIC

DOI:

https://doi.org/10.3989/mc.2016.05415

Palabras clave:

Composite, Refuerzo de fibras, Hormigón, Polímero, Propiedades mecánicas

Resumen


El desarrollo de tecnologías de monitorización aplicables junto con las novedosas técnicas de refuerzo basadas en materiales CFRP ha recibido una atención creciente los últimos años. Sin embargo, a pesar del alto rendimiento de estos avanzados materiales compuestos en la reparación y refuerzo de estructuras en servicio, están habitualmente asociados a fallos frágiles y repentinos causados principalmente por fenómenos de despegue, originados bien en los extremos del refuerzo, bien en áreas intermedias en las proximidades de grietas de flexión existentes en la viga. Por tanto, es altamente recomendable monitorizar estas soluciones estructurales de cara a garantizar su integridad en servicio. Específicamente, se ha estudiado la viabilidad de sensores inteligentes tales como los sensores Fiber Bragg Grating (FBG) o los transductores piezoeléctricos (PZT). Hasta donde los autores saben, no se han realizado estudios serios hasta la fecha abordando la detección de daño debido al despegue en estructuras reforzadas con compuestos CFRP.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Sohn, H.; Farrar, C.R.; Hemez, F.M.; Shunk, D.D.; Stinemates, D.W.; Nadler, B.R.; Czarnecki, J.J. (2004) A Review of Structural Health Monitoring Literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS.

2. Teng, J.G.; Chen, J.F.; Smith, S.T.; Lam, L. (2002) CFRP strengthened RC structures. 1st Ed. West Sussex: John Wiley and Sons.

3. Bank, L.C. (2006) Composites for construction: structural design with CFRP materials. 1st Ed. West Sussex: John Wiley and Sons. http://dx.doi.org/10.1002/9780470121429

4. Balaguru, P.; Nanni, A.; Giancaspro, J. (2009) CFRP composites for reinforced and prestressed concrete structures. A guide to fundamentals and design for repair and retrofit. 1st Ed. Taylor and Francis, New York and London.

5. Perera, R.; Sevillano, E.; Arteaga, A.; De Diego, A. (2014) Identification of intermediate debonding damage in CFRPplated RC beams based on multi-objective particle swarm optimization without updated baseline model. Compos. Part B Eng. 62, 205-217. http://dx.doi.org/10.1016/j.compositesb.2014.02.008

6. Attari, N.; Amziane, S.; Chemrouk, M. (2010) Flexural strengthening of concrete beams using CFRP, GCFRP and hybrid CFRP sheets. Constr. Build. Mat. 37, 746-757. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.052

7. Dong, J.; Wang, Q.; Guan, Z. (2013) Structural behaviour of RC beams with external flexural and flexural-shear strengthening by CFRP sheets. Compos. Part B Eng. 44, 604-612. http://dx.doi.org/10.1016/j.compositesb.2012.02.018

8. El Maaddawy, T.; Soudki, K. (2008) Strengthening of reinforced concrete slabs with mechanically-anchored unbounded CFRP systems. Constr. Build. Mater. 22, 444-455. http://dx.doi.org/10.1016/j.conbuildmat.2007.07.022

9. Yang, Z.J.; Chen, J.F.; Proverbs, D. (2003) Finite element modelling of concrete cover separation failure in CFRP plated RC beams. Constr. Build. Mater. 17 [1], 3-13. http://dx.doi.org/10.1016/S0950-0618(02)00090-9

10. Pesic, N.; Pilakoutas, K. (2003) Concrete beams with externally bonded flexural CFRP-reinforcement: analytical investigation of debonding failure. Compos. Part B Eng. 34 [4], 327-338. http://dx.doi.org/10.1016/S1359-8368(02)00139-7

11. Sebastian, W.M. (2002) Significance of midspan debonding failure in CFRP-plated concrete beams. J. Struct. Eng. 127 [7], 792-798. http://dx.doi.org/10.1061/(ASCE)0733-9445(2001)127:7(792)

12. Rahimi, A.; Hutchinson, A. (2001) Concrete Beams Strengthened with Externally Bonded CFRP Plates. J. Compos. Constr. 5 [1], 44-56. http://dx.doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44)

13. Yao, J.; Teng, J.G.; Lam, L. (2005) Experimental study on intermediate crack debonding in CFRP-strengthened RC flexural members. Adv. Struct. Eng. 8 [4], 365-396. http://dx.doi.org/10.1260/136943305774353106

14. Ascione, L.; Feo, L. (2000) Modeling of composite/concrete interface of RC beams strengthened with composite laminates. Compos. Part B Eng. 31 [6-7], 535-40. http://dx.doi.org/10.1016/S1359-8368(99)00063-3

15. Liu, S.T.; Oehlers, D.J.; Seracino, R. (2011) Study of intermediate crack debonding in adhesively plated beams. J. Compos. Constr. 11 [2], 175-183. http://dx.doi.org/10.1061/(ASCE)1090-0268(2007)11:2(175)

16. Sun, R.; Sevillano, E.; Perera, R. (2015) A discrete spectral model for intermediate crack debonding in CFRPstrengthened RC beams. Compos. Part B Eng. 69, 562-575. http://dx.doi.org/10.1016/j.compositesb.2014.10.017

17. Chen, G.M.; Teng, J.G.; Chen, J.F. (2011) Finite-element modelling of intermediate crack debonding in CFRPplated RC beams. J. Compos. Contr. 15 [3], 339-353. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000157

18. Leo, D.J. (2007) Engineering analysis of smart material systems, John Wiley & Sons. http://dx.doi.org/10.1002/9780470209721

19. Glisic, B.; Inaudi, D. (2007) Fibre optic methods for structural health monitoring, John Wiley and Sons. http://dx.doi.org/10.1002/9780470517819

20. Todd, M.D.; Nichols, J.M.; Trickey, S.T. (2007) Bragg grating-based fibre optic sensors in structural health monitoring. Philos. T. Roy. Soc. A 365 [1851], 317-344. http://dx.doi.org/10.1098/rsta.2006.1937 PMid:17255042

21. Giurgiutiu, V. (2008) Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Elsevier Inc.

22. Fritzen, C.P.; Kraemer, P. (2009) Self-diagnosis of smart structures based on dynamical properties. Mech. Syst. Signal Pr. 23 [6], 1830-1845. http://dx.doi.org/10.1016/j.ymssp.2009.01.006

23. Sierra-Pérez, J.; Güemes, A.; Mújica, L.E.; (2013) Damage detection by using FBGs and strain field pattern recognition techniques. Smart Mater. Struct. 22, 025011 10.

24. Zhou, Z.; Graver, T.W.; Hsu, L.; Ou, J.P. (2003) Techniques of Advanced FBG sensors: fabrication, demodulation, encapsulation and their application in the structural health monitoring of bridges. Pac. Sci. Rev. 5, 116-121.

25. Milojevic, A.; Tomic, M.; Pavlovic, N. (2012) Application of FBG sensors in smart railway. XV International Scientific-Expert Conference on Railways, Nis, Serbia.

26. Murawski, L.; Opoka, S.; Ostachowicz, W.; Wandowski, T.; Malinowski, P. (2011) Practical application of SHM system based on FBG sensors for offshore platform. Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium.

27. Takeda, N. (2008) Fiber optic sensor-based SHM technologies for aerospace applications in Japan. Proceedings of SPIE, 6933, 693302 13. http://dx.doi.org/10.1117/12.776838

28. Guo, H.; Xiao, G.; Mrad, N.; Yao, J. (2011) Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors, 11, 3687-3705. http://dx.doi.org/10.3390/s110403687 PMid:22163816 PMCid:PMC3231328

29. Giurgiutiu, V. (2008) Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Elsevier Inc.

30. Saafi, M.; Sayyah, T. (2001) Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers. Compos. Part B Eng. 32, 333-342. http://dx.doi.org/10.1016/S1359-8368(01)00017-8

31. Giurgiutiu, V.; Reynolds, A.; Rogers, C.A. (1999) Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints. J. Intel. Mat. Syst. Str.

32. Giurgiutiu, V.; Harries, K.; Petrou, M.; Bost, J.; Quattlebaum, J.B. (2003) Disbond detection with piezoelectriz wafer active sensors in RC structures strengthened with CFRP composite overlays. Esarth. Eng. Eng. Vib. 2 [2].

33. Liang, C.; Sun, F.P.; Rogers, C.A. (1994) Coupled electro-mechanical analysis of adaptive material systems determination of the actuator power consumption and system energy transfer. J. Intel. Mat. Syst. Str. 5, 12-20. http://dx.doi.org/10.1177/1045389X9400500102

34. Park, G.; Farrar, C.R.; Rutherford, A.C.; Robertson, A.C. (2006) Piezoelectric active sensor self-diagnosis using electric admittance measurements. J. Vib. Acoust. 128, 469-476. http://dx.doi.org/10.1115/1.2202157

35. Yang, Y.; Divsholli, B.S. (2010) Sub-Frequency Interval Approach in Electromechanical Impedance Technique for Concrete Structure Health Monitoring. Sensors, 10, 11644-11661. http://dx.doi.org/10.3390/s101211644 PMid:22163548 PMCid:PMC3231059

36. Peairs, D.M.; Tarazaga, P.A.; Inman, D.J. (2006) A study on the correlation between PZT and MFC resonance peaks and adequate damage detection frequency intervals using the impedance method. International Conference on Noise & Vibration Engineering (ISMA), Leuven, Belgium.

Publicado

2016-06-30

Cómo citar

Sevillano, E., Sun, R., Perera, R., Arteaga, A., de Diego, A., & Cisneros, D. (2016). Comparación de sensores PZT y FBG para la detección de despegues en vigas de hormigón armado reforzadas externamente con bandas de CFRP y sometidas a cargas de flexión. Materiales De Construcción, 66(322), e088. https://doi.org/10.3989/mc.2016.05415

Número

Sección

Artículos