Preparación y caracterización de un recubrimiento protector autolimpiante de TiO2/caolín
DOI:
https://doi.org/10.3989/mc.2018.08517Palabras clave:
Compuesto, Durabilidad, Caracterización, Microestructura, Distribución de tamaños de partículas de, Microscopía Electrónica de Barrido (MEB), Difracción de rayos X (DRX)Resumen
La aplicación de recubrimientos autolimpiantes presenta una de las maneras más efectivas de proteger las superficies de los materiales de construcción. Se ha investigado el efecto de recubrimientos basados en TiO2/caolín, aplicados sobre tres tipos de sustratos: no poroso, poroso y altamente poroso. Se utilizó activación mecánica para la impregnación del componente de TiO2 activo (en contenido del 3 y 10% en peso) sobre el soporte de caolín. Se han estudiado las propiedades superficiales (rugosidad, hidrofilicidad y microdureza) y las propiedades funcionales (actividad fotocatalítica y eficacia autolimpiante) para definir la formulación óptima de las capas aplicadas. El efecto del comportamiento fotocatalítico de los sustratos revestidos en términos de capacidad de autolimpieza se evaluó mediante la fotodegradación de Rodamina B, realizada antes y después de las pruebas de durabilidad. Los resultados obtenidos en este trabajo mostraron que la actividad fotocatalítica del revestimiento de TiO2/ caolín, dependen en general del procedimiento de impregnación de TiO2 en la capa de caolín y el contenido utilizado de TiO2.
Descargas
Citas
Chen, J.; Poon, C.S. (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44 (9), 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002
Ducman, V.; Petrovi_, V.; _kapin, D.S. (2013) Photo-catalytic efficiency of laboratory made and commercially available ceramic building products. Ceram. Int. 39 (3), 2981-2987. https://doi.org/10.1016/j.ceramint.2012.09.075
Goffredo, G.B.; Munafò, P. (2015) Preservation of historical stone surfaces by TiO2 nanocoatings. Coatings. 5 (2), 222-231. https://doi.org/10.3390/coatings5020222
Sciancalepore, C. F.; Bondioli, F. (2015) Durability of SiO2-TiO2 photocatalytic coatings on Ceramic Tiles. Int. J. Appl. Ceram. Technol. 12 (3), 679-684. https://doi.org/10.1111/ijac.12240
Sciancalepore, C.; Manfredini, T.; Bondioli, F. (2014) Antibacterial and self-cleaning coatings for silicate seramics: A review. Advances in Science and Technology, 92, 90-99. https://doi.org/10.4028/www.scientific.net/AST.92.90
Pal, S.; Contaldi, V.; Liccilulli, A.; Marzo, F. (2016) Self-cleaning mineral paint for application in architectural heritage. Coatings. 6 (4), 48. https://doi.org/10.3390/coatings6040048
Taurino, R.; Barbieri, L.; Bondioli, F. (2016) Surface properties of new green building material after TiO2-SiO2 coatings deposition. Ceram. Int. 42 (4), 4866-4874. https://doi.org/10.1016/j.ceramint.2015.12.002
Ranogajec, J.; Radeka, M.; Ba_kali_, Z.; _kapin, A.; Zori_, D. (2010) Photocatalytic and superhydrophilic phenomena of TiO2 coated clay roofing tiles. Chem. Ind. Chem. Eng. Q. 16 (2), 117-126. https://doi.org/10.2298/CICEQ091214018R
Zhang, Y.H.; Gan, H.; Zhang, G. (2011) A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chem. Eng. J. 172 (2-3), 936-943. https://doi.org/10.1016/j.cej.2011.07.005
Warheit, D.B.; Hoke, R.A.; Finlay, C.; Donner, E.M.; Reed, K.L.; Sayes, C.M. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett, 2007. 171(3), 99-110. https://doi.org/10.1016/j.toxlet.2007.04.008 PMid:17566673
Yu, Y. (2004) Preparation of nanocristalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity. Powder Technol. 146 (1-2), 154-159. https://doi.org/10.1016/j.powtec.2004.06.006
Yahiro, H.; Miyamoto, T.; Watanabe, N.; Yamaura, H. (2007) Photocatalytic partial oxidation of a-metylstyrene over TiO2 suported on zeolites, Catal. Today, 120 (2), 158-162. https://doi.org/10.1016/j.cattod.2006.07.039
Puzenat, E.; Puerre, P. (2003) Studying TiO2 coating on silica-covered glass by O2 photosorption measurements and FTIR-ATR spectrometry: Correlation with the self-cleaning efficacy, J. Photochem. Photobiol. A: Chemistry, 160 (1-2), 127-133. https://doi.org/10.1016/S1010-6030(03)00231-4
Rebilasová. S.; Mamulová. K.K.; Mat_jka. V.; Tokarsky_. J.; Kukutschová. J.; Neuwirthová. L.; _APKOVÁ. P. (2010) Preparation, characterization and comparison of composites: kaolinite/TiO2 and quartz/TiO2.NANOCON'10 International conference, Czech Republic.
Vulic,T.; Hadnadjev-Kostic, M.; Rudic, O.; Radeka, M.; Marinkovic- Neducin, R.; Ranogajec, J. (2013) Improvement of cement-based mortars by application of photocatalytic active Ti-Zn-Al nanocomposites, Cem. Concr. Compos. 36, 121-127. https://doi.org/10.1016/j.cemconcomp.2012.07.005
Keller, N.; Rebmann, G.; Barraud, E.; Zahraa, O.; Keller, V. (2005) Macroscopic carbon nanofibers for use as photocatalydt support, Catal. Today 101, 323-329. https://doi.org/10.1016/j.cattod.2005.03.021
Portela, R.; Sánchez, B.; Coronado, J.M.; Candal, R.; Suárez, S. (2007) Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal, Catal. Today 129 (1-20), 223-230. https://doi.org/10.1016/j.cattod.2007.08.005
Rudic, O.; Rajnovic, D.; Cjepa, D.; Vucetic, S.; Ranogajec, J. (2015) Investigation of the durability of porous mineral substrates with newly designed TiO2-LDH coating. Ceram. Int. 41 (8), 9779-9792. https://doi.org/10.1016/j.ceramint.2015.04.050
Rudic, O.; Ranogajec, J.; Vulic, T.; Vucetic, S.; Cjepa, D.; Lazar, D. (2014) Photo-induced properties of TiO2/ZnAl layered double hydroxide coating onto porous mineral substrates. Ceram. Int. 40 (7), Part A 9445-9455. https://doi.org/10.1016/j.ceramint.2014.02.017
Chong, M.N.; Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. (2009) Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporous Mesoporous Mater. 117 (1-2), 233-242. https://doi.org/10.1016/j.micromeso.2008.06.039
Yuan, L.; Huang, D.; Guo, D.; Yang, Q.; Yu, J. (2011) TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay Sci. 53 (2), 272-278. https://doi.org/10.1016/j.clay.2011.03.013
Szczepanik, B. (2017) Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl. Clay Sci. 141, 227-239. https://doi.org/10.1016/j.clay.2017.02.029
Fujishima, A.; Hashimoto, K.; Watanabe, T. (1999) TiO2 photocatalysis fundamentals and applications, Tokyo Bkc (1999).
Ma, Y.; Qiu, J.B.; Cao, Y.A.; Guan, Z.S.; Yao, J.N. (2001) Photocatalytic activity of TiO2 films grown on different substrates. Chemosphere - Oxford 44 (5), 1087-1092.
Yu, J.; Zhao, X. (2000) Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 35 (8), 1293-1301. https://doi.org/10.1016/S0025-5408(00)00327-5
Fidanchevska, E.; Jovanov, V.; Angjusheva, B.; Srebrenkoska, V. (2014) Composites based on fly ash and clay, The 27-th Conference of the Israel Nuclear Societies, February, 11-13, Dead Sea Israel
SRPS U.M8.300:1985, Determination of the Capillary Water Absorption of Building Material and Coatings, 1985.
Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E. (2017) Synthesis of nanocompositecoating based on TiO2/ZnAl layer double hydroxides, Materiales de Construcción 67 (325), 112-120. https://doi.org/10.3989/mc.2017.07215
UNI 11259:2008. Determination of the photocatalytic activity of hydraulic binders - Dodammina test method. Ente nazionale italiano di unificazione; 2008
Cassar, L.; Beeldens, A.; Pimpinelli, N.; Guerrini, G.L. (2007) Photocatalysis of cementous materials. Proceedings pro055: InternationalRILEM symposium on photocatalysis, environment and construction materials - TDP 2007, Edited by: Biglioni, P., Cassa, L., RILEM Publications SARI. 131-45.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.