Preliminary study on the upcycle of non-structural construction and demolition waste for waste cleaning
DOI:
https://doi.org/10.3989/mc.2020.13819Keywords:
Concrete, Heavy metals, Waste treatment, Adsorption, CharacterizationAbstract
This study proposes a method to convert non-structural calcium-rich construction and demolition waste fines into adsorbents of heavy metal ions by mixing waste fines with diammonium hydrogen phosphate solution to produce hydroxyapatite, which has high surface areas and excellent ion-exchange capacity with heavy metal ions. As a result, environmental polluting waste is converted into environmentally cleaning material. Waste putty powders was chosen as the representative waste to investigate the detailed formation process of hydroxyapatite and the key reaction parameters of the reaction. Results showed that hydroxyapatite can be produced on waste putty particles. Higher ageing temperatures or longer ageing duration are beneficial to the yield and crystallinity of the produced hydroxyapatite. Adsorption testing confirmed that Ni2+ can replace Ca2+ in the hydroxyapatite lattice, leading to the formation of a new crystal, arupite (Ni3(PO4)2•8H2O), and contributing to a modest adsorption capacity for Ni2+ (15 mg/g) for the hydroxyapatite-containing waste putty.
Downloads
References
Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
Evangelista, L.; de Brito, J. (2014) Concrete with fine recycled aggregates: a review. Eur. J. Environ. Civ. Eng. 18, 129-172. https://doi.org/10.1080/19648189.2013.851038
Silva, R.V.; Neves, R.; de Brito, J.; Dhir, R.K. (2015) Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 62, 22-32. https://doi.org/10.1016/j.cemconcomp.2015.04.017
Zhang, Z.; Zhang, Y.; Yan, C.; Liu, Y. (2017) Influence of crushing index on properties of recycled aggregates pervious concrete. Constr. Build. Mater. 135, 112-118. https://doi.org/10.1016/j.conbuildmat.2016.12.203
Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015) Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Constr. Build. Mater. 77, 357-369. https://doi.org/10.1016/j.conbuildmat.2014.12.103
Butler, L.; West, J.S.; Tighe, S.L. (2011) The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem. Concr. Res. 41 [10], 1037-1049. https://doi.org/10.1016/j.cemconres.2011.06.004
Chen, P.; Wang, J.; Wang, L.; Xu, Y.; Qian, X.; Ma, H. (2017) Producing vaterite by CO2 sequestration in the waste solution of chemical treatment of recycled concrete aggregates. J. Clean. Prod. 149, 735-742. https://doi.org/10.1016/j.jclepro.2017.02.148
Lee, N.K.; Abate, S.Y.; Kim, H.-K. (2018) Use of recycled aggregates as internal curing agent for alkali-activated slag system. Constr. Build. Mater. 159, 286-296. https://doi.org/10.1016/j.conbuildmat.2017.10.110
Li, W.; Xiao, J.; Sun, Z.; Kawashima, S.; Shah, S.P. (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Constr. Build. Mater. 35, 1045-1055. https://doi.org/10.1016/j.conbuildmat.2012.06.022
Wang, L.; Wang, J.; Qian, X.; Chen, P.; Xu, Y.; Guo, J. (2017) An environmentally friendly method to improve the quality of recycled concrete aggregates. Constr. Build. Mater. 144, 432-441. https://doi.org/10.1016/j.conbuildmat.2017.03.191
Dong, N.T.; Novák, P.; Vejpravova, J.; Hong, N.V.; Lederer, J.; Munshi, T. (2017) Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. J. Magn. Magn. Mater. 456, 451-460. https://doi.org/10.1016/j.jmmm.2017.11.064
Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. (2017) Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48-76. https://doi.org/10.1016/j.ccr.2017.06.009
Dick, T.A.; dos Santos, L.A. (2017) In situ synthesis and characterization of hydroxyapatite/natural rubber composites for biomedical applications. Mater. Sci. Eng. C 77, 874-882. https://doi.org/10.1016/j.msec.2017.03.301 PMid:28532104
Wu, S.-C.; Hsu, H.-C.; Hsu, S.-K.; Tseng, C.-P.; Ho, W.-F. (2017) Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Adv. Powder Technol. 28 [4], 1154-1158. https://doi.org/10.1016/j.apt.2017.02.001
De Angelis, G.; Medeghini, L.; Conte, A.M.; Mignardi, S. (2017) Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. J. Clean. Prod. 164, 1497- 1506. https://doi.org/10.1016/j.jclepro.2017.07.085
Mobasherpour, I.; Salahi, E.; Pazouki, M. (2012) Comparative of the removal of Pb2+ , Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arab. J. Chem. 5 [4], 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022
Ramakrishnan, P.; Nagarajan, S.; Thiruvenkatam, V.; Palanisami, T.; Naidu, R.; Mallavarapu, M.; Rajendran, S. (2016) Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: A comparative study with and without calcination. Appl. Clay Sci. 134, 136-144. https://doi.org/10.1016/j.clay.2016.09.022
Xia, W.-Y.; Feng, Y.-S.; Jin, F.; Zhang, L.-M.; Du, Y.-J. (2017) Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr. Build. Mater. 156, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.08.149
Corami, A.; Mignardi, S.; Ferrini, V. (2008) Cadmium removal from single- and multi-metal (Cd+Pb+Zn+Cu) solutions by sorption on hydroxyapatite. J. Colloid Interface Sci. 317 [2], 402-408. https://doi.org/10.1016/j.jcis.2007.09.075 PMid:17949731
Guo, J.; Han, Y.; Mao, Y.; Wickramaratne, M. (2017) Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions. Colloid Surf. A-Physicochem. Eng. Asp. 529, 801-807. https://doi.org/10.1016/j.colsurfa.2017.06.075
Ning, Y.; Li, J.; Cai, W.; Shao, X. (2012) Simultaneous determination of heavy metal ions in water using near-infrared spectroscopy with preconcentration by nano-hydroxyapatite. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 96, 289-294. https://doi.org/10.1016/j.saa.2012.05.034 PMid:22698846
Guo, Y.J.; Wang, Y.Y.; Chen, T.; Wei, Y.T.; Chu, L.F.; Guo, Y.P. (2013) Hollow carbonated hydroxyapatite microspheres with mesoporous structure: hydrothermal fabrication and drug delivery property. Mater. Sci. Eng., C. 33 [6], 3166-3172. https://doi.org/10.1016/j.msec.2013.03.040 PMid:23706197
Pramanik, S.; Agarwal, A.K.; Rai, K.N.; Garg, A. (2007) Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33 [3], 419-426. https://doi.org/10.1016/j.ceramint.2005.10.025
Farzadi, A.; Solati-Hashjin, M.; Bakhshi, F.; Aminian, A. (2011) Synthesis and characterization of hydroxyapatite/β- tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 37 [1], 65-71. https://doi.org/10.1016/j.ceramint.2010.08.021
Lak, A.; Mazloumi, M.; Mohajerani, M.S.; Zanganeh, S.; Shayegh, M.R.; Kajbafvala, A; Arami, H.; Sadrnezhaad, S.K. (2008) Rapid Formation of Mono-Dispersed Hydroxyapatite Nanorods with Narrow-Size Distribution via Microwave Irradiation. J. Am. Ceram. Soc. 91 [11], 3580- 3584. https://doi.org/10.1111/j.1551-2916.2008.02690.x
Liu, Z. (2015) Research on Yunnan phosphorus gypsum building putty powder of interior wall and evaluation of social benefits. Kunming University of Science and Technology,.(in Chinese)
Raval, N.P.; Shah, P.U.; Shah, N.K. (2016) Adsorptive removal of nickel(II) ions from aqueous environment: A review. Environ. Manage. 179, 1-20. https://doi.org/10.1016/j.jenvman.2016.04.045 PMid:27149285
Mehta, P.; Kaith, B.S. (2018) A Novel approach for the morphology controlled synthesis of rod-shaped nano-hydroxyapatite using semi-IPN and IPN as a template. Int. J. Biol. Macromol. 107, 312-321. https://doi.org/10.1016/j.ijbiomac.2017.08.164 PMid:28888548
Sivaperumal, V.R.; Mani, R.; Nachiappan, M.S.; Arumugam, K. (2017) Direct hydrothermal synthesis of hydroxyapatite/ alumina nanocomposite. Mater. Charact. 134, 416-421. https://doi.org/10.1016/j.matchar.2017.11.016
Thevannan, A.; Mungroo, R.; Niu, C.H. (2010) Biosorption of nickel with barley straw. Bioresour. Technol. 101 [6], 1776-1780. https://doi.org/10.1016/j.biortech.2009.10.035 PMid:19914062
Malkoc, E.; Nuhoglu, Y. (2005) Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. 127 [1-3], 120-128. https://doi.org/10.1016/j.jhazmat.2005.06.030 PMid:16125314
Elouear, Z.; Amor, R.B.; Bouzid, J.; Boujelben, N. (2009) Use of Phosphate Rock for the Removal of Ni2+ from Aqueous Solutions: Kinetic and Thermodynamics Studies. J. Environ. Eng. 135 [4], 259-265. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:4(259)
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.