Estudio preliminar sobre el empleo de residuos de construcción y demolición no estructurales para la eliminación de residuos

Autores/as

DOI:

https://doi.org/10.3989/mc.2020.13819

Palabras clave:

Hormigón, Metales pesados, Tratamiento de residuos, Adsorción, Caracterización

Resumen


Este estudio propone un método para convertir residuos de construcción y demolición no estructurales, ricos en calcio y pulverulentos, en adsorbentes de iones de metales pesados mezclándolos con una solución de hidrógenofosfato de diamonio para generar hidroxiapatita, la cual presenta una elevada área superficial y una excelente capacidad de intercambio iónico de iones de metales pesados. De este modo, un residuo contaminante se convierte en un material que limpia el medio ambiente. Se seleccionó residuo en forma de masilla en polvo como residuo representativo para investigar en detalle los procesos de formación de hidroxiapatita y los parámetros clave implicados en la reacción. Los resultados mostraron que la hidroxiapatita se puede producir en las partículas de los residuos empleados. La producción y la cristalinidad de la hidroxia­patita se ve favorecida por temperaturas de envejecimiento elevadas y prolongadas. Los ensayos de adsorción confirmaron que el Ni2+ puede sustituir al Ca2+ en la estructura de la hidroxiapatita, formándose un nuevo mineral, arupita (Ni3(PO4)2•8H2O), y contribuyendo a una adsorción modesta de Ni2+ (15 mg/g) por parte de la masilla de residuos con hidroxiapatita.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Evangelista, L.; de Brito, J. (2014) Concrete with fine recycled aggregates: a review. Eur. J. Environ. Civ. Eng. 18, 129-172. https://doi.org/10.1080/19648189.2013.851038

Silva, R.V.; Neves, R.; de Brito, J.; Dhir, R.K. (2015) Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 62, 22-32. https://doi.org/10.1016/j.cemconcomp.2015.04.017

Zhang, Z.; Zhang, Y.; Yan, C.; Liu, Y. (2017) Influence of crushing index on properties of recycled aggregates pervi­ous concrete. Constr. Build. Mater. 135, 112-118. https://doi.org/10.1016/j.conbuildmat.2016.12.203

Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015) Durability performance of concrete with recycled aggre­gates from construction and demolition waste plants. Constr. Build. Mater. 77, 357-369. https://doi.org/10.1016/j.conbuildmat.2014.12.103

Butler, L.; West, J.S.; Tighe, S.L. (2011) The effect of recy­cled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem. Concr. Res. 41 [10], 1037-1049. https://doi.org/10.1016/j.cemconres.2011.06.004

Chen, P.; Wang, J.; Wang, L.; Xu, Y.; Qian, X.; Ma, H. (2017) Producing vaterite by CO2 sequestration in the waste solution of chemical treatment of recycled con­crete aggregates. J. Clean. Prod. 149, 735-742. https://doi.org/10.1016/j.jclepro.2017.02.148

Lee, N.K.; Abate, S.Y.; Kim, H.-K. (2018) Use of recycled aggregates as internal curing agent for alkali-activated slag system. Constr. Build. Mater. 159, 286-296. https://doi.org/10.1016/j.conbuildmat.2017.10.110

Li, W.; Xiao, J.; Sun, Z.; Kawashima, S.; Shah, S.P. (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Constr. Build. Mater. 35, 1045-1055. https://doi.org/10.1016/j.conbuildmat.2012.06.022

Wang, L.; Wang, J.; Qian, X.; Chen, P.; Xu, Y.; Guo, J. (2017) An environmentally friendly method to improve the quality of recycled concrete aggregates. Constr. Build. Mater. 144, 432-441. https://doi.org/10.1016/j.conbuildmat.2017.03.191

Dong, N.T.; Novák, P.; Vejpravova, J.; Hong, N.V.; Lederer, J.; Munshi, T. (2017) Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. J. Magn. Magn. Mater. 456, 451-460. https://doi.org/10.1016/j.jmmm.2017.11.064

Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. (2017) Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48-76. https://doi.org/10.1016/j.ccr.2017.06.009

Dick, T.A.; dos Santos, L.A. (2017) In situ synthesis and characterization of hydroxyapatite/natural rubber com­posites for biomedical applications. Mater. Sci. Eng. C 77, 874-882. https://doi.org/10.1016/j.msec.2017.03.301 PMid:28532104

Wu, S.-C.; Hsu, H.-C.; Hsu, S.-K.; Tseng, C.-P.; Ho, W.-F. (2017) Preparation and characterization of hydroxyapa­tite synthesized from oyster shell powders. Adv. Powder Technol. 28 [4], 1154-1158. https://doi.org/10.1016/j.apt.2017.02.001

De Angelis, G.; Medeghini, L.; Conte, A.M.; Mignardi, S. (2017) Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. J. Clean. Prod. 164, 1497- 1506. https://doi.org/10.1016/j.jclepro.2017.07.085

Mobasherpour, I.; Salahi, E.; Pazouki, M. (2012) Comparative of the removal of Pb2+ , Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arab. J. Chem. 5 [4], 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022

Ramakrishnan, P.; Nagarajan, S.; Thiruvenkatam, V.; Palanisami, T.; Naidu, R.; Mallavarapu, M.; Rajendran, S. (2016) Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: A compara­tive study with and without calcination. Appl. Clay Sci. 134, 136-144. https://doi.org/10.1016/j.clay.2016.09.022

Xia, W.-Y.; Feng, Y.-S.; Jin, F.; Zhang, L.-M.; Du, Y.-J. (2017) Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr. Build. Mater. 156, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.08.149

Corami, A.; Mignardi, S.; Ferrini, V. (2008) Cadmium removal from single- and multi-metal (Cd+Pb+Zn+Cu) solu­tions by sorption on hydroxyapatite. J. Colloid Interface Sci. 317 [2], 402-408. https://doi.org/10.1016/j.jcis.2007.09.075 PMid:17949731

Guo, J.; Han, Y.; Mao, Y.; Wickramaratne, M. (2017) Influence of alginate fixation on the adsorption capac­ity of hydroxyapatite nanocrystals to Cu2+ ions. Colloid Surf. A-Physicochem. Eng. Asp. 529, 801-807. https://doi.org/10.1016/j.colsurfa.2017.06.075

Ning, Y.; Li, J.; Cai, W.; Shao, X. (2012) Simultaneous deter­mination of heavy metal ions in water using near-infrared spectroscopy with preconcentration by nano-hydroxyap­atite. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 96, 289-294. https://doi.org/10.1016/j.saa.2012.05.034 PMid:22698846

Guo, Y.J.; Wang, Y.Y.; Chen, T.; Wei, Y.T.; Chu, L.F.; Guo, Y.P. (2013) Hollow carbonated hydroxyapatite micro­spheres with mesoporous structure: hydrothermal fabrica­tion and drug delivery property. Mater. Sci. Eng., C. 33 [6], 3166-3172. https://doi.org/10.1016/j.msec.2013.03.040 PMid:23706197

Pramanik, S.; Agarwal, A.K.; Rai, K.N.; Garg, A. (2007) Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33 [3], 419-426. https://doi.org/10.1016/j.ceramint.2005.10.025

Farzadi, A.; Solati-Hashjin, M.; Bakhshi, F.; Aminian, A. (2011) Synthesis and characterization of hydroxyapatite/β- tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 37 [1], 65-71. https://doi.org/10.1016/j.ceramint.2010.08.021

Lak, A.; Mazloumi, M.; Mohajerani, M.S.; Zanganeh, S.; Shayegh, M.R.; Kajbafvala, A; Arami, H.; Sadrnezhaad, S.K. (2008) Rapid Formation of Mono-Dispersed Hydroxyapatite Nanorods with Narrow-Size Distribution via Microwave Irradiation. J. Am. Ceram. Soc. 91 [11], 3580- 3584. https://doi.org/10.1111/j.1551-2916.2008.02690.x

Liu, Z. (2015) Research on Yunnan phosphorus gypsum building putty powder of interior wall and evaluation of social benefits. Kunming University of Science and Technology,.(in Chinese)

Raval, N.P.; Shah, P.U.; Shah, N.K. (2016) Adsorptive removal of nickel(II) ions from aqueous environment: A review. Environ. Manage. 179, 1-20. https://doi.org/10.1016/j.jenvman.2016.04.045 PMid:27149285

Mehta, P.; Kaith, B.S. (2018) A Novel approach for the morphology controlled synthesis of rod-shaped nano-hydroxyapatite using semi-IPN and IPN as a template. Int. J. Biol. Macromol. 107, 312-321. https://doi.org/10.1016/j.ijbiomac.2017.08.164 PMid:28888548

Sivaperumal, V.R.; Mani, R.; Nachiappan, M.S.; Arumugam, K. (2017) Direct hydrothermal synthesis of hydroxyapatite/ alumina nanocomposite. Mater. Charact. 134, 416-421. https://doi.org/10.1016/j.matchar.2017.11.016

Thevannan, A.; Mungroo, R.; Niu, C.H. (2010) Biosorption of nickel with barley straw. Bioresour. Technol. 101 [6], 1776-1780. https://doi.org/10.1016/j.biortech.2009.10.035 PMid:19914062

Malkoc, E.; Nuhoglu, Y. (2005) Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. 127 [1-3], 120-128. https://doi.org/10.1016/j.jhazmat.2005.06.030 PMid:16125314

Elouear, Z.; Amor, R.B.; Bouzid, J.; Boujelben, N. (2009) Use of Phosphate Rock for the Removal of Ni2+ from Aqueous Solutions: Kinetic and Thermodynamics Studies. J. Environ. Eng. 135 [4], 259-265. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:4(259)

Publicado

2020-06-30

Cómo citar

Chen, P., Chen, X., Wang, Y., & Wang, P. (2020). Estudio preliminar sobre el empleo de residuos de construcción y demolición no estructurales para la eliminación de residuos. Materiales De Construcción, 70(338), e220. https://doi.org/10.3989/mc.2020.13819

Número

Sección

Artículos