Performance of rubber mortars containing silica coated rubber

Authors

DOI:

https://doi.org/10.3989/mc.2021.11620

Keywords:

Mortar, Waste treatment, Mechanical properties, Characterization, Microstructure

Abstract


This paper investigates the influence of silica coated rubber on the performance of rubber mortars. A classical Stöber sol-gel method is applied to produce a layer of silica coating on rubber particles, which is used to partially replace the fine aggregates in concrete. The effects of the surface-modified rubber particles on the flowability, mechanical strength, capillary water absorption rate, and microstructure of mortars are examined. The results show that the silica coating on the rubber particles reduces the contact angle between the rubber particles from 120° to 103° (i.e., by 17°) and changes the hydrophobic properties from strong hydrophobicity to weak hydrophobicity. The mechanical strengths of mortars are significantly improved by the incorporation of surface-modified rubber particles, i.e., from 41.60% to 44.86% (compressive strength) and from 7.80% to 26.28% (flexural strength). In addition, the incorporation of surface modified rubber particles increases the density of the mortar’s microstructure and enhances the interfaces with its surrounding pastes.

Downloads

Download data is not yet available.

References

Strukar, K.; Šipoš, T.K.; Miličević, I.; Bušić, R. (2019) Potential use of rubber as aggregate in structural reinforced concrete element - A review. Eng. Struct. 188, 452-468. https://doi.org/10.1016/j.engstruct.2019.03.031

Li, Y.; Zhang, S.; Wang, R.; Dang, F. (2019) Potential use of waste tire rubber as aggregate in cement concrete - A comprehensive review. Constr. Build. Mater. 225, 1183-1201. https://doi.org/10.1016/j.conbuildmat.2019.07.198

Siddika, A.; Al Mamun, M.A.; Alyousef, R.; Amran, Y.H.M.; Aslani, F.; Alabduljabbar, H. (2019) Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108

Li, D.; Zhuge, Y.; Gravina, R.; Mills, J.E. (2018) Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab. Constr. Build. Mater. 166, 745-759. https://doi.org/10.1016/j.conbuildmat.2018.01.142

Long, X-H.; Ma, Y-T.; Yue, R.; Fan, J. (2018) Experimental study on impact behaviors of rubber shock absorbers. Constr. Build. Mater. 173, 718-729. https://doi.org/10.1016/j.conbuildmat.2018.04.077

Gupta, T.; Chaudhary, S.; Sharma, R.K. (2014) Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Constr. Build. Mater. 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102

Gerges, N.N.; Issa, C.A.; Fawaz, S.A. (2018) Rubber concrete: Mechanical and dynamical properties. Case Stud. Constr. Mater. 9, e00184. https://doi.org/10.1016/j.cscm.2018.e00184

Pham, N-P.; Toumi, A.; Turatsinze, A. (2019) Effect of an enhanced rubber-cement matrix interface on freeze-thaw resistance of the cement-based composite. Constr. Build. Mater. 207, 528-534. https://doi.org/10.1016/j.conbuildmat.2019.02.147

Marie, I. (2016) Zones of weakness of rubberized concrete behavior using the UPV. J. Clean. Prod. 116, 217-222. https://doi.org/10.1016/j.jclepro.2015.12.096

Angelin, A.F.; Cecche Lintz, R.C.; Gachet-Barbosa, L.A.; Osório, W.R. (2017) The effects of porosity on mechanical behavior and water absorption of an environmentally friendly cement mortar with recycled rubber. Constr. Build. Mater. 151, 534-545. https://doi.org/10.1016/j.conbuildmat.2017.06.061

Li, Y.; Zhang, X.; Wang, R.; Lei, Y. (2019) Performance enhancement of rubberised concrete via surface modification of rubber: A review. Constr. Build. Mater. 227, 116691. https://doi.org/10.1016/j.conbuildmat.2019.116691

Li, G.; Wang, Z.; Leung, C.K.Y.; Tang, S.; Pan, J.; Huang, W.; Chen, E. (2016) Properties of rubberized concrete modified by using silane coupling agent and carboxylated SBR. J. Clean. Prod. 112 [1], 797-807. https://doi.org/10.1016/j.jclepro.2015.06.099

Dong, Q.; Huang, B.; Shu, X. (2013) Rubber modified concrete improved by chemically active coating and silane coupling agent. Constr. Build. Mater. 48, 116-123. https://doi.org/10.1016/j.conbuildmat.2013.06.072

Balaha, M.M.; Badawy, A.A.M.; Hashish, M. (2007) Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes. Indian J. Eng. Mater. Sci. 14, 427-435.

He, L.; Ma, Y.; Liu, Q.; Mu, Y. (2016) Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete. Constr. Build. Mater. 120, 403-407. https://doi.org/10.1016/j.conbuildmat.2016.05.025

Belessiotis, G.V.; Papadokostaki, K.G.; Favvas, E.P.; Efthimiadou, E.K.; Karellas, S. (2018) Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres. Energ. Convers. Manage. 168, 382-394. https://doi.org/10.1016/j.enconman.2018.04.059

Xiong, L.; Liu, J.; Li, Y.; Li, S.; Yu, M. (2019) Enhancing corrosion protection properties of sol-gel coating by pH-responsive amino-silane functionalized graphene oxide-mesoporous silica nanosheets. Prog. Org. Coat. 135, 228-239. https://doi.org/10.1016/j.porgcoat.2019.06.007

Kutyin, A.M.; Rostokina, E.Y.; Gavrishchuk, E.M.; Drobotenko, V.V.; Plekhovich, A.D.; Yunin, P.A. (2015) Kinetics and formation mechanism of yttrium aluminum garnet from an amorphous phase prepared by the sol-gel method. Ceram. Int. 41 [9], Part A, 10616-10623. https://doi.org/10.1016/j.ceramint.2015.04.161

Kazlauske, J.; Gårdebjer, S.; Almer, S.; Larsson, A. (2017) The importance of the molecular weight of ethyl cellulose on the properties of aqueous-based controlled release coatings. Int. J. Pharmaceut. 519 [1-2], 157-164. https://doi.org/10.1016/j.ijpharm.2016.12.021 PMid:27979762

Peng, T.; Shi, Y.; Zhu, C.; Feng, D.; Ma, X.; Yang, P.; Bai, X.; Pan, X.; Wu, C-y.; Tan, W.; Wu, C. (2020) Data on the drug release profiles and powder characteristics of the ethyl cellulose based microparticles prepared by the ultra-fine particle processing system. Data Brief. 29, 105269. https://doi.org/10.1016/j.dib.2020.105269 PMid:32095496 PMCid:PMC7033531

Jin, J.; Xiao, T.; Zheng, J.; Liu, R.; Qian, G.; Xie, J.; Wei, H.; Zhang, J.; Liu, H. (2018) Preparation and thermal properties of encapsulated ceramsite-supported phase change materials used in asphalt pavements. Constr. Build. Mater. 190, 235-245. https://doi.org/10.1016/j.conbuildmat.2018.09.119

Taguchi, Y.; Yokoyama, H.; Kado, H.; Tanaka, M. (2007) Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloid. Surface. A: Phy. Engi. Asp. 301 [1-3], 41-47. https://doi.org/10.1016/j.colsurfa.2006.12.019

ASTM C150/C150M. (2018). Standard specification for Portland cement. ASTM International, West Conshohocken, PA.

ASTM C1437. (2013) Standard test method for flow of hydraulic cement mortar. ASTM International, West Conshohocken, PA.

ASTM C109. (2013) Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens), ASTM International, West Conshohocken, PA.

ASTM C349. (2014) Standard test method for compressive strength of hydraulic - cement (using portions of prisms broken in flexure), ASTM International, West Conshohocken, PA.

ASTM C1585. (2013) Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, ASTM International, West Conshohocken, PA.

Yuan, H.; Bai, H.; Lu, X.; Zhang, X.; Zhang, J.; Zhang, Z.; Yang, L. (2019) Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage. Sol. Energ. Mat. Sol. Cell. 191, 243-257. https://doi.org/10.1016/j.solmat.2018.11.019

Li, G.; Yue, J.; Guo, C.; Ji, Y. (2018) Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating. Constr. Build. Mater. 169, 1-7. https://doi.org/10.1016/j.conbuildmat.2018.02.191

Al-Akhras, N.M.; Smadi, M.M. (2004) Properties of tire rubber ash mortar. Cem. Concr. Compos. 26 [7], 821-826. https://doi.org/10.1016/j.cemconcomp.2004.01.004

Angelin, A.F.; Andrade, M.F.F.; Bonatti, R.; Cecche Lintz, R.C.; Gachet-Barbosa, L.A.; Osório, W.R. (2015) Effects of spheroid and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortars. Constr. Build. Mater. 95, 525-536. https://doi.org/10.1016/j.conbuildmat.2015.07.166

Chen, X.; Wu, S.; Zhou, J. (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 40, 869-874. https://doi.org/10.1016/j.conbuildmat.2012.11.072

Xavier, B.C.; Verzegnassi, E.; Bortolozo, A.D.; Alves, S.M.; Lintz, R.C.C.; Gachet, L.A.; Osório, W.R. (2020) Fresh and hardened states of distinctive self-compacting concrete with marble- and phyllite-powder aggregate contents. J. Mater. Civil. Eng. 32 [5], 04020065.1-04020065.11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003103

Pham, N-P.; Toumi, A.; Turatsinze, A. (2018) Rubber aggregate- cement matrix bond enhancement: Microstructural analysis, effect on transfer properties and on mechanical behaviours of the composite. Cem. Concr. Compos. 94, 1-12. https://doi.org/10.1016/j.cemconcomp.2018.08.005

Published

2021-05-20

How to Cite

Li, J. ., Chen, P. ., Cai, H. ., Xu, Y. ., Tian, X. ., Li, C. ., & Cui, L. . (2021). Performance of rubber mortars containing silica coated rubber. Materiales De Construcción, 71(342), e244. https://doi.org/10.3989/mc.2021.11620

Issue

Section

Research Articles