Influencia de la adición de fibras de carbon en las propiedades de los morteros de cal hidráulica: comparación con fibras de vidrio y basalto

Autores/as

DOI:

https://doi.org/10.3989/mc.2020.00120

Palabras clave:

Mortero, Cal hidráulica, Refuerzo de fibras, Propiedades mecánicas, Caracterización

Resumen


En los últimos años, se ha incrementado el uso de cal hidráulica en trabajos de conservación y restauración de edificios históricos debido a los procesos patológicos involucrados en el uso de cemento Portland. En esta investigación se determinan las propiedades de los morteros de cal hidráulica con adición de fibras de carbono para su posible uso en restauración del patrimonio arquitectónico. Se comparan los resultados obtenidos con morteros a los que se les han añadido fibras de vidrio y basalto. Los resultados muestran que las fibras afectan significativamente al comportamiento del mortero, mejorando significativamente las resistencias mecánicas. Aunque no se han encontrado diferencias relevantes en el comportamiento previo al agrietamiento, se ha demostrado que las fibras evitan una rotura frágil del mortero, mostrando un mejor comportamiento posterior al agrietamiento. Los morteros con fibras de carbono son los presentan un mejor rendimiento, aumentando la tenacidad hasta un 12080% sobre los morteros de referencia.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. (2013) Optimization of compatible restoration mortars for the earthquake protection of Hagia Sophia. J. Cult. Herit. 14 [3], e147-e152. https://doi.org/10.1016/j.culher.2013.01.008

Bianco, N.; Calia, A.; Denotarpietro, G.; Negro, P. (2013) Laboratory assessment of the performance of new hydrau­lic mortars for restoration. Procedia Chem. 8, 20-27. https://doi.org/10.1016/j.proche.2013.03.004

Arizzi, A.; Martínez- Huerga, G.; Sebastian-Pardo, E.; Cultrone, G. (2015) Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions. Mater. Construcc. 65 [318], e053. https://doi.org/10.3989/mc.2015.03514

Gullota, D.; Goidanich, S.; Tedeschi, C.; Nijland, T.G.; Toniolo, L. (2013) Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: Compositional and mechanical characterisation. Constr. Build. Mat. 38, 31-42. https://doi.org/10.1016/j.conbuildmat.2012.08.029

Kozlovcev, P.; Přikryl, R. (2015) Devonian micritic lime­stones used in the historic production of Prague hydraulic lime ('pasta di Praga'): characterization of the raw material and experimental laboratory burning. Mater. Construcc. 65 [319], e060. https://doi.org/10.3989/mc.2015.06314

Arizzi, A.; Viles, H.; Cultrone, G. (2012) Experimental test­ing of the durability of lime-based mortars used for render­ing historic buildings. Constr. Build. Mat. 28 [1], 807-818. https://doi.org/10.1016/j.conbuildmat.2011.10.059

Tassew, S.T.; Lubell, A.S. (2014) Mechanical proper­ties of glass fiber reinforced ceramic concrete. Constr. Build. Mat. 51, 215-224. https://doi.org/10.1016/j.conbuildmat.2013.10.046

Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. (2015) Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mat. 100, 218-224. https://doi.org/10.1016/j.conbuildmat.2015.10.006

Fenu, L.; Forni, D.; Cadoni, E. (2016) Dynamic behav­iour of cement mortars reinforced with glass and basalt fibres. Comp. Part B: Eng. 92, 142-150. https://doi.org/10.1016/j.compositesb.2016.02.035

Lipatov, Y.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I. (2015) High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 73, 60-66. https://doi.org/10.1016/j.matdes.2015.02.022

Kabay, N. (2014) Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mat. 50, 95-101. https://doi.org/10.1016/j.conbuildmat.2013.09.040

Graham, R.K.; Huang, B.; Shu, X.; Burdette, E.G. (2013) Laboratory evaluation of tensile strength and energy absorb­ing properties of cement mortar reinforced with micro-and meso-sized carbon fibers. Constr. Build. Mat. 44, 751-756. https://doi.org/10.1016/j.conbuildmat.2013.03.071

Shu, X.; Graham, R.K.; Huang, B.; Burdette, E.G. (2015) Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar. Mater. Des. 65, 1222-1228. https://doi.org/10.1016/j.matdes.2014.10.015

Nguyen, H.; Carvelli, V.; Fujii, T.; Okubo, K. (2016) Cement mortar reinforced with reclaimed carbon fibres, CFRP waste or prepreg carbon waste. Constr. Build. Mat. 126, 321-331. https://doi.org/10.1016/j.conbuildmat.2016.09.044

Lucolano, F.; Liguori, B.; Colella, C. (2013) Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration. Constr. Build. Mat. 38, 785-789. https://doi.org/10.1016/j.conbuildmat.2012.09.050

Santarelli, M.L.; Sbardella, F.; Zuena, M.; Tirillò, J.; Sarasini, F. (2014) Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restora­tion. Mater. Des. 63, 398-406. https://doi.org/10.1016/j.matdes.2014.06.041

Arslan, M.E. (2016) Effects of basalt and glass chopped fibers addition on fracture energy and mechanical proper­ties of ordinary concrete: CMOD measurement. Constr. Build. Mat. 114, 383-391. https://doi.org/10.1016/j.conbuildmat.2016.03.176

EN 459-1 (2015) Building lime - Part 1: Definitions, speci­fications and conformity criteria. European Committee for Standardization. Retrieved from https://standards. iteh.ai/catalog/standards/cen/588081bb-ff4e-4421-997c- 2d7dcab1b6ac/en-459-1-2015.

EN 196-1 (2016). Methods of testing cement - Part 1: Determination of strength. European Committee for Standardization. Retrieved from https://standards.iteh.ai/catalog/standards/cen/37b8816e-4085-4dcc-a642- a383d9bddd6c/en-196-1-2016.

Gao, J.; Wang, Z.; Zhang, T.; Zhou, L. (2017) Dispersion of carbon fibers in cement-based composites with differ­ent mixing methods. Constr. Build. Mat. 134, 220-227. https://doi.org/10.1016/j.conbuildmat.2016.12.047

EN 459-2 (2010) Building lime - Part 2: Test Methods. European Committee for Standardization. Retrieved from https://standards.iteh.ai/catalog/standards/cen/7e034aed-a672-467a-8b6c-53c5d4f79a72/en-459-2-2010.

EN 1015-3/A2 (2006) Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table). Retrieved from https://standards.iteh.ai/catalog/ standards/cen/fb7a5bb4-d8e4-4c91-a7f8-a5cc646ce3e9/ en-1015-3-1999-a2-2006.

EN 1015-6/A1 (2006) Methods of test for mortar for masonry - Part 6: Determination of bulk density of fresh mortar. Retrieved from https://standards.iteh.ai/catalog/ standards/cen/529d9f7a-4b23-4747-8e12-a3185038cb1e/ en-1015-6-1998-a1-2006.

EN 1015-10/A1 (2006) Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar. European Committee for Standardization. Retrieved from https://standards.iteh.ai/catalog/stan­dards/cen/865ded6d-f5e0-43ba-9ba9-69da5400168a/ en-1015-10-1999-a1-2006.

EN 1015-7 (1998) Methods of test for mortar for masonry - Part 7: determination of air content of fresh mortar. Retrieved from https://standards.iteh.ai/catalog/stan­dards/cen/3c66138f-1eb7-41a2-99c6-92ed26a7bdd1/ en-1015-7-1998.

EN 1015-11/A1 (2006) Methods of test for mortar for masonry - Part 11: Determination of flexural and compres­sive strength of hardened mortar. European Committee for Standardization. Retrieved from https://standards. iteh.ai/catalog/standards/cen/251c5fb4-ef60-4285-9039- be39d56242d3/en-1015-11-1999-a1-2006.

ASTM C1609/C1609M-12 (2012) Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), ASTM International, West Conshohocken, PA. https://doi.org/ 10.1520/C1609_C1609M-12.

Hou, L.J.; Xu, S.L.; Zhang, X.F. (2012) Toughness evaluation of ultra-high toughness cementitious composite specimens with different depths. Mag. Concr. Res. 64 [12], 1079-1088. https://doi.org/10.1680/macr.11.00186

Li, Y.; Li, Y.; Shi, T.; Li, J. (2015) Experimental study on mechanical properties and fracture toughness of magne­sium phosphate cement. Constr. Build. Mat. 96, 346-352. https://doi.org/10.1016/j.conbuildmat.2015.08.012

UNE 83508 (2004) Concrete with fibers. Determination of the index of tenacity in compression. Spanish Association for Standardization and Certification. Retrieved from https://www.aenor.com/normas-y-libros/ buscador-de-normas/une/?c=N0032568.

García-Cuadrado, J.; Rodríguez, A.; Cuesta, I. I.; Calderón, V.; Gutiérrez-González, S. (2017) Study and analysis by means of surface response to fracture behavior in lime-cement mortars fabricated with steelmaking slags. Constr. Build. Mat. 138, 204-213. https://doi.org/10.1016/j.conbuildmat.2017.01.122

Jiang, C.; Fan, K.; Wu, F.; Chen, D. (2014) Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58, 187-193. https://doi.org/10.1016/j.matdes.2014.01.056

Khushnood, R.A.; Muhammad, S.; Ahmad, S.; Tulliani, J.M.; Qamar, M.U.; Ullah, Q. Maqsom, A. (2018) Theoretical and experimental analysis of multifunctional high performance cement mortar matrices reinforced with varying lengths of carbon fibers. Mater. Construcc. 68 [332], e172. https://doi.org/10.3989/mc.2018.09617

Pereira-de-Oliveira, L.A.; Castro-Gomes, J.P.; Nepomuceno, M.C. (2012) Effect of acrylic fibres geom­etry on physical, mechanical and durability properties of cement mortars. Constr. Build. Mat. 27 [1], 189-196. https://doi.org/10.1016/j.conbuildmat.2011.07.061

Bustos-García, A.; Moreno-Fernández, E.; Zavalis, R.; Valivonis, J. (2019) Diagonal compression tests on masonry wallets coated with mortars reinforced with glass fibers. Mater. Struct. 52 [3], 60. https://doi.org/10.1617/s11527-019-1360-y

Asprone, D.; Cadoni, E.; Lucolano, F.; Prota, A. (2014) Analysis of the strain-rate behavior of a basalt fiber rein­forced natural hydraulic mortar. Cem. Concr. Compos. 53, 52-58. https://doi.org/10.1016/j.cemconcomp.2014.06.009

Izaguirre, A.; Lanas, J.; Alvarez, J.I. (2011) Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars. Constr. Build. Mat. 25 [2], 992-1000. https://doi.org/10.1016/j.conbuildmat.2010.06.080

Serrano, R.; Cobo, A.; Prieto, M.I.; de las Nieves González, M. (2016) Analysis of fire resistance of con­crete with polypropylene or steel fibers. Constr. Build. Mat. 122, 302-309. https://doi.org/10.1016/j.conbuildmat.2016.06.055

Publicado

2020-11-04

Cómo citar

Bustos, A., Moreno, E., González, F., & Cobo, A. (2020). Influencia de la adición de fibras de carbon en las propiedades de los morteros de cal hidráulica: comparación con fibras de vidrio y basalto. Materiales De Construcción, 70(340), e229. https://doi.org/10.3989/mc.2020.00120

Número

Sección

Artículos