Rendimiento de morteros de caucho que contienen caucho recubierto de sílice
DOI:
https://doi.org/10.3989/mc.2021.11620Palabras clave:
Mortero, Tratamiento de residuos, Propiedades mecánicas, Caracterización, MicroestructuraResumen
Este trabajo investiga la influencia del caucho recubierto de sílice en el rendimiento de los morteros de caucho. Se aplica un método clásico de Stöber sol-gel para producir una capa de revestimiento de sílice sobre las partículas de caucho, que se utiliza para reemplazar parcialmente los áridos finos en el hormigón. Se examinan los efectos de las partículas de caucho modificadas en la superficie sobre la fluidez, la resistencia mecánica, la tasa de absorción de agua por capilaridad y la microestructura de los morteros. Los resultados muestran que el revestimiento de sílice de las partículas de caucho reduce el ángulo de contacto entre las partículas de caucho de 120° a 103° (es decir, en 17°) y cambia las propiedades hidrofóbicas de hidrofobia fuerte a hidrofobia débil. Las resistencias mecánicas de los morteros mejoran significativamente con la incorporación de partículas de caucho modificadas en la superficie, del 41,60% al 44,86% (resistencia a la compresión) y del 7,80% al 26,28% (resistencia a la flexión). Además, la incorporación de partículas de caucho modificadas en la superficie aumenta la densidad de la microestructura del mortero y mejora las interfases con las pastas que lo rodean.
Descargas
Citas
Strukar, K.; Šipoš, T.K.; Miličević, I.; Bušić, R. (2019) Potential use of rubber as aggregate in structural reinforced concrete element - A review. Eng. Struct. 188, 452-468. https://doi.org/10.1016/j.engstruct.2019.03.031
Li, Y.; Zhang, S.; Wang, R.; Dang, F. (2019) Potential use of waste tire rubber as aggregate in cement concrete - A comprehensive review. Constr. Build. Mater. 225, 1183-1201. https://doi.org/10.1016/j.conbuildmat.2019.07.198
Siddika, A.; Al Mamun, M.A.; Alyousef, R.; Amran, Y.H.M.; Aslani, F.; Alabduljabbar, H. (2019) Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108
Li, D.; Zhuge, Y.; Gravina, R.; Mills, J.E. (2018) Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab. Constr. Build. Mater. 166, 745-759. https://doi.org/10.1016/j.conbuildmat.2018.01.142
Long, X-H.; Ma, Y-T.; Yue, R.; Fan, J. (2018) Experimental study on impact behaviors of rubber shock absorbers. Constr. Build. Mater. 173, 718-729. https://doi.org/10.1016/j.conbuildmat.2018.04.077
Gupta, T.; Chaudhary, S.; Sharma, R.K. (2014) Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Constr. Build. Mater. 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102
Gerges, N.N.; Issa, C.A.; Fawaz, S.A. (2018) Rubber concrete: Mechanical and dynamical properties. Case Stud. Constr. Mater. 9, e00184. https://doi.org/10.1016/j.cscm.2018.e00184
Pham, N-P.; Toumi, A.; Turatsinze, A. (2019) Effect of an enhanced rubber-cement matrix interface on freeze-thaw resistance of the cement-based composite. Constr. Build. Mater. 207, 528-534. https://doi.org/10.1016/j.conbuildmat.2019.02.147
Marie, I. (2016) Zones of weakness of rubberized concrete behavior using the UPV. J. Clean. Prod. 116, 217-222. https://doi.org/10.1016/j.jclepro.2015.12.096
Angelin, A.F.; Cecche Lintz, R.C.; Gachet-Barbosa, L.A.; Osório, W.R. (2017) The effects of porosity on mechanical behavior and water absorption of an environmentally friendly cement mortar with recycled rubber. Constr. Build. Mater. 151, 534-545. https://doi.org/10.1016/j.conbuildmat.2017.06.061
Li, Y.; Zhang, X.; Wang, R.; Lei, Y. (2019) Performance enhancement of rubberised concrete via surface modification of rubber: A review. Constr. Build. Mater. 227, 116691. https://doi.org/10.1016/j.conbuildmat.2019.116691
Li, G.; Wang, Z.; Leung, C.K.Y.; Tang, S.; Pan, J.; Huang, W.; Chen, E. (2016) Properties of rubberized concrete modified by using silane coupling agent and carboxylated SBR. J. Clean. Prod. 112 [1], 797-807. https://doi.org/10.1016/j.jclepro.2015.06.099
Dong, Q.; Huang, B.; Shu, X. (2013) Rubber modified concrete improved by chemically active coating and silane coupling agent. Constr. Build. Mater. 48, 116-123. https://doi.org/10.1016/j.conbuildmat.2013.06.072
Balaha, M.M.; Badawy, A.A.M.; Hashish, M. (2007) Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes. Indian J. Eng. Mater. Sci. 14, 427-435.
He, L.; Ma, Y.; Liu, Q.; Mu, Y. (2016) Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete. Constr. Build. Mater. 120, 403-407. https://doi.org/10.1016/j.conbuildmat.2016.05.025
Belessiotis, G.V.; Papadokostaki, K.G.; Favvas, E.P.; Efthimiadou, E.K.; Karellas, S. (2018) Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres. Energ. Convers. Manage. 168, 382-394. https://doi.org/10.1016/j.enconman.2018.04.059
Xiong, L.; Liu, J.; Li, Y.; Li, S.; Yu, M. (2019) Enhancing corrosion protection properties of sol-gel coating by pH-responsive amino-silane functionalized graphene oxide-mesoporous silica nanosheets. Prog. Org. Coat. 135, 228-239. https://doi.org/10.1016/j.porgcoat.2019.06.007
Kutyin, A.M.; Rostokina, E.Y.; Gavrishchuk, E.M.; Drobotenko, V.V.; Plekhovich, A.D.; Yunin, P.A. (2015) Kinetics and formation mechanism of yttrium aluminum garnet from an amorphous phase prepared by the sol-gel method. Ceram. Int. 41 [9], Part A, 10616-10623. https://doi.org/10.1016/j.ceramint.2015.04.161
Kazlauske, J.; Gårdebjer, S.; Almer, S.; Larsson, A. (2017) The importance of the molecular weight of ethyl cellulose on the properties of aqueous-based controlled release coatings. Int. J. Pharmaceut. 519 [1-2], 157-164. https://doi.org/10.1016/j.ijpharm.2016.12.021 PMid:27979762
Peng, T.; Shi, Y.; Zhu, C.; Feng, D.; Ma, X.; Yang, P.; Bai, X.; Pan, X.; Wu, C-y.; Tan, W.; Wu, C. (2020) Data on the drug release profiles and powder characteristics of the ethyl cellulose based microparticles prepared by the ultra-fine particle processing system. Data Brief. 29, 105269. https://doi.org/10.1016/j.dib.2020.105269 PMid:32095496 PMCid:PMC7033531
Jin, J.; Xiao, T.; Zheng, J.; Liu, R.; Qian, G.; Xie, J.; Wei, H.; Zhang, J.; Liu, H. (2018) Preparation and thermal properties of encapsulated ceramsite-supported phase change materials used in asphalt pavements. Constr. Build. Mater. 190, 235-245. https://doi.org/10.1016/j.conbuildmat.2018.09.119
Taguchi, Y.; Yokoyama, H.; Kado, H.; Tanaka, M. (2007) Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloid. Surface. A: Phy. Engi. Asp. 301 [1-3], 41-47. https://doi.org/10.1016/j.colsurfa.2006.12.019
ASTM C150/C150M. (2018). Standard specification for Portland cement. ASTM International, West Conshohocken, PA.
ASTM C1437. (2013) Standard test method for flow of hydraulic cement mortar. ASTM International, West Conshohocken, PA.
ASTM C109. (2013) Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens), ASTM International, West Conshohocken, PA.
ASTM C349. (2014) Standard test method for compressive strength of hydraulic - cement (using portions of prisms broken in flexure), ASTM International, West Conshohocken, PA.
ASTM C1585. (2013) Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, ASTM International, West Conshohocken, PA.
Yuan, H.; Bai, H.; Lu, X.; Zhang, X.; Zhang, J.; Zhang, Z.; Yang, L. (2019) Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage. Sol. Energ. Mat. Sol. Cell. 191, 243-257. https://doi.org/10.1016/j.solmat.2018.11.019
Li, G.; Yue, J.; Guo, C.; Ji, Y. (2018) Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating. Constr. Build. Mater. 169, 1-7. https://doi.org/10.1016/j.conbuildmat.2018.02.191
Al-Akhras, N.M.; Smadi, M.M. (2004) Properties of tire rubber ash mortar. Cem. Concr. Compos. 26 [7], 821-826. https://doi.org/10.1016/j.cemconcomp.2004.01.004
Angelin, A.F.; Andrade, M.F.F.; Bonatti, R.; Cecche Lintz, R.C.; Gachet-Barbosa, L.A.; Osório, W.R. (2015) Effects of spheroid and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortars. Constr. Build. Mater. 95, 525-536. https://doi.org/10.1016/j.conbuildmat.2015.07.166
Chen, X.; Wu, S.; Zhou, J. (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 40, 869-874. https://doi.org/10.1016/j.conbuildmat.2012.11.072
Xavier, B.C.; Verzegnassi, E.; Bortolozo, A.D.; Alves, S.M.; Lintz, R.C.C.; Gachet, L.A.; Osório, W.R. (2020) Fresh and hardened states of distinctive self-compacting concrete with marble- and phyllite-powder aggregate contents. J. Mater. Civil. Eng. 32 [5], 04020065.1-04020065.11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003103
Pham, N-P.; Toumi, A.; Turatsinze, A. (2018) Rubber aggregate- cement matrix bond enhancement: Microstructural analysis, effect on transfer properties and on mechanical behaviours of the composite. Cem. Concr. Compos. 94, 1-12. https://doi.org/10.1016/j.cemconcomp.2018.08.005
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
National Natural Science Foundation of China - State Grid Corporation Joint Fund for Smart Grid
Números de la subvención 52008003
Department of Housing and Urban-Rural Development of Anhui Province
Números de la subvención 2020-YF12;2020-YF14
Key Technologies Research and Development Program of Anhui Province
Números de la subvención 201904a07020081
Natural Science Foundation of Anhui Province
Números de la subvención 1908085QE213