Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios

Authors

  • J. J. Trochez Universidad del Valle
  • R. Mejía de Gutiérrez Universidad del Valle
  • J. Rivera Universidad del Valle
  • S. A. Bernal University of Sheffield

DOI:

https://doi.org/10.3989/mc.2015.00814

Keywords:

Spent fluid catalytic cracking catalyst, Alkali-activation, Geopolymers, Structural characterization

Abstract


This paper assesses the feasibility of using a spent fluid catalytic cracking catalyst (SFCC) as precursor for the production of geopolymers. The mechanical and structural characterization of alkali-activated SFCC binders formulated with different overall (activator + solid precursor) SiO2/Al2O3 and Na2O/SiO2 molar ratios are reported. Formation of an aluminosilicate ‘geopolymer’ gel is observed under all conditions of activation used, along with formation of zeolites. Increased SiO2/Al2O3 induces the formation of geopolymers with reduced mechanical strength, for all the Na2O/SiO2 ratios assessed, which is associated with excess silicate species supplied by the activator. This is least significant at increased alkalinity conditions (higher Na2O/SiO2 ratios), as larger extents of reaction of the spent catalyst are achieved. SiO2/Al2O3 and Na2O/SiO2 ratios of 2.4 and 0.25, respectively, promote the highest compressive strength (67 MPa). This study elucidates the great potential of using SFCC as precursor to produce sustainable ceramic-like materials via alkali-activation.

Downloads

Download data is not yet available.

References

1. Zornoza-Gómez, E. (2007) El papel del catalizador usado de craqueo catalítico (fcc) como material puzolánico en el proceso de corrosión de armaduras de hormigón, in Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil. Universitat Politécnica de Valencia: Valencia- Espa-a. 328.

2. Pacewska, B.; Wilinska, I.; Kubissa, J. (1998) Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive. Thermochim. Acta 322 [2], 175–181. http://dx.doi.org/10.1016/S0040-6031(98)00498-5

3. Payá, J.; Monzó, J.; Borrachero, M.V. (1999) Fluid catalytic cracking catalyst residue (FC3R): An excellent mineral by-product for improving early-strength development of cement mixtures. Cem. Concr. Res. 29 [11],1773–1779. http://dx.doi.org/10.1016/S0008-8846(99)00164-7

4. Letzsch, W. (2010) Global demand for catalytic technology increases. Available from: http://www.hartfuel.com/f.catalyst.html.

5. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. (2007) Geopolymer technology: The current state of the art. J. Mater. Sci. 42 [9], 2917–2933. http://dx.doi.org/10.1007/s10853-006-0637-z

6. Duxson, P.; Provis, J.L. (2008) Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91 [12], 3864–3869. http://dx.doi.org/10.1111/j.1551-2916.2008.02787.x

7. Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. (2000) Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 30 [10], 1625–1632. http://dx.doi.org/10.1016/S0008-8846(00)00298-2

8. Kovalchuk, G.; Fernández-Jiménez, A.; Palomo, A. (2008) Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Mater. Construcc. 58 [291], 35–52.

9. Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construcc. 63 [311], 361–375.

10. Shi, C.; Day, R.L. (1993) Chemical activation of blended cements made with lime and natural pozzolans. Cem. Concr. Res. 23 [6], 1389–1396. http://dx.doi.org/10.1016/0008-8846(93)90076-L

11. Najafi Kani, E.; Allahverdi, A.; Provis, J.L. (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34 [1], 25–33. http://dx.doi.org/10.1016/j.cemconcomp.2011.07.007

12. Xu, H.; van Deventer, J.S.J. (2000) The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Proc. 59 [3], 247–266. http://dx.doi.org/10.1016/S0301-7516(99)00074-5

13. Feng, D.; Provis, J.L.; van Deventer, J.S.J. (2012) Thermal activation of albite for the synthesis of one-part mix geopolymers. J. Am. Ceram. Soc. 95 [5], 565–572. http://dx.doi.org/10.1111/j.1551-2916.2011.04925.x

14. Tashima, M.M.; Akasaki, J.L.; Castaldelli, V.N.; Soriano, L.; Monzó, J.; Payá, J.; Borrachero, M.V. (2012) New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Mater. Lett. 80, 50–52. http://dx.doi.org/10.1016/j.matlet.2012.04.051

15. Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Gehman, J.D.; Monzó, J.M.; Payá, J.; Borrachero, M.V. (2013) Geopolymer based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel. 109, 493–502. http://dx.doi.org/10.1016/j.fuel.2013.02.053

16. Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Gordillo, M.; Provis, J.L. (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46 [16], 5477–5486. http://dx.doi.org/10.1007/s10853-011-5490-z

17. Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surfaces A 269 [1–3], 47–58. http://dx.doi.org/10.1016/j.colsurfa.2005.06.060

18. Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. (2005) Do geopolymers actually contain nanocrystalline zeolites? - A reexamination of existing results. Chem. Mater. 17 [12], 3075–3085. http://dx.doi.org/10.1021/cm050230i. http://dx.doi.org/10.1021/cm050230i

19. Lloyd, R.R.; Provis, J.L.; van Deventer, J.S.J. (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J. Mater. Sci. 44 [2], 608–619. http://dx.doi.org/10.1007/s10853-008-3077-0

20. Gualtieri, A.; Norby, P.; Artioli, G.; Hanson, J. (1997) Kinetics of formation of zeolite Na-A [LTA] from natural kaolinites. Phys. Chem. Miner. 24 [3], 191–199. http://dx.doi.org/10.1007/s002690050032

21. Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90 [6], 2118–2124. http://dx.doi.org/10.1016/j.fuel.2011.01.018

22. Madejova, J.; Komadel, P. (2001) Baseline studies of the Clay Minerals Society source clays: Infrared methods. Clays Clay Miner. 49 [5], 410–432. http://dx.doi.org/10.1346/CCMN.2001.0490508

23. Miessner, H.; Kosslick, H.; Lohse, U.; Parlitz, B.; Tuan, V.A. (1993) Characterization of highly dealuminated faujasite-type zeolites: ultrastable zeolite Y and ZSM-20. J. Phys. Chem. 97, 9741–9748. http://dx.doi.org/10.1021/j100140a034

24. Farmer V.C. The Infrared Spectra of Minerals. London: Mineralogical Society, 1974. http://dx.doi.org/10.1180/mono-4

25. Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. (2007) Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23 [15], 8170–8179. http://dx.doi.org/10.1021/la700713g PMid:17590027

26. Provis, J.L.; Duxson, P.; Lukey, G.C.; van Deventer, J.S.J. (2005) Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. Chem. Mater. 17 [11], 2976–2986. http://dx.doi.org/10.1021/cm050219i

27. Rees, C.A. Mechanisms and Kinetics of Gel Formation in Geopolymers, Ph.D. Thesis. University of Melbourne: Melbourne, Australia, 2007.

28. Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim. Acta 539, 23–33. http://dx.doi.org/10.1016/j.tca.2012.03.021

29. Hartman, J.S.; Sherriff, B.L. (1991) Silicon-29 MAS NMR of the aluminosilicate mineral kyanite: residual dipolar coupling to aluminum-27 and nonexponential spin-lattice relaxation. J. Phys. Chem. 95 [20], 7575–7579. http://dx.doi.org/10.1021/j100173a005

30. Occelli, M.L.; Voigt, U.; Eckert, H. (2004) The use of solid state nuclear magnetic resonance (NMR) to study the effect of composition on the properties of equilibrium fluid cracking catalysts (FCCs). Appl Catal. A 259, 245–251. http://dx.doi.org/10.1016/j.apcata.2003.09.032

31. Rakiewicz, E.F.; Mueller, K.T.; Jarvie, T.P.; Sutovich, K.J.; Roberie, T.G.; Peters, A.W. (1996) Solid-state NMR studies of silanol groups in mildly and highly dealuminated faujasites. Microporous Mater. 7, 81–88. http://dx.doi.org/10.1016/0927-6513(96)00031-4

32. Behera, B.; Ray, S.S. (2009) Structural changes of FCC catalyst from fresh to regeneration stages and associated coke in a FCC refining unit: A multinuclear solid state NMR approach. Catal. Today 141 [1], 195–204. http://dx.doi.org/10.1016/j.cattod.2008.03.017

33. Duxson, P.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. (2005) The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44 [4], 832–839. http://dx.doi.org/10.1021/ie0494216

34. Merwin, L.H.; Sebald, A.; Rager, H.; Schneider, H. (1991) 29Si and 27Al MAS NMR spectroscopy of mullite. Phys. Chem. Miner. 18, 47–52. http://dx.doi.org/10.1007/BF00199043

Published

2015-03-30

How to Cite

Trochez, J. J., Mejía de Gutiérrez, R., Rivera, J., & Bernal, S. A. (2015). Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O. Materiales De Construcción, 65(317), e046. https://doi.org/10.3989/mc.2015.00814

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>