Uso potencial de ceniza de lodo de depuradora (CLD) como sustitución de cemento en bloques de hormigón prefabricados
DOI:
https://doi.org/10.3989/mc.2014.06312Palabras clave:
valorización residuos, marcado CE, CLD, bloques prefabricados, hormigónResumen
El objetivo de esta investigación es estudiar el uso potencial de las cenizas de lodos de depuradora (CLD), como sustitución del cemento Portland en bloques de hormigón prefabricados, de forma que se pueda lograr una revalorización de este material de desecho mediante este procedimiento. La metodología utilizada en este trabajo se rige por las directrices del Plan Nacional Español de Lodos de Aguas Residuales de 2001–2006, y por las exigencias del Consejo Europeo (marcado CE), que es obligatorio para este tipo de productos. Se han utilizado dos niveles de sustitución de cemento (10% y 20%), y todos los resultados han sido referidos a las muestras control. Los resultados obtenidos muestran que es posible utilizar una sustitución parcial del cemento por CLD, en la fabricación de bloques de hormigón prefabricados, y por lo tanto, se pueden conseguir beneficios económicos y ambientales, así como la mejora de una serie de propiedades.
Descargas
Citas
1. Ministerio de Agricultura, Alimentación y Medio Ambiente: http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/lodos-depuradora/, Consulta red febrero 2013.
2. Ministerio de Medio Ambiente, y Medio Rural y Marino: Caracterización de los lodos de depuradoras generados en Espa-a. (2009).
3. Ministerio de Medio Ambiente, y Medio Rural y Marino: II Plan Nacional de lodos de depuradoras de aguas residuales. (2008) – EDAR II PNLD (2007–2015).
4. Trapote Jaume, A. (2011) Depuración de aguas residuales. Publicaciones de la Universidad de Alicante, 365–414, Alicante.
5. European Commission (2010) Environmental, economic and social impacts of the use of sewage sludge on land. Final Report. Part I: Overview Report, 3–8.
6. Cyr, M.; Coutand, M.; Clastres, P. (2007) Technological and environmental behaviour of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 37, 1276–1289. http://dx.doi.org/10.1016/j.cemconres.2007.04.003
7. Werther, J.; Ogada, T. (1999) Sewage sludge combustion. Prog. Energ. Combust. Sci. 25, 55–116. http://dx.doi.org/10.1016/S0360-1285(98)00020-3
8. Fytili, D.; Zabanioutou, A. (2008) Utilization of sewage sludge in EU application of old and new methods – a review. Renew. Sust. Energ. Rev. 12, 116–140. http://dx.doi.org/10.1016/j.rser.2006.05.014
9. Wiebusch, B.; Seyfried, C.F. (1997) Utilization of sewage sludge ashes in the crick and tile industry. Water Sci. Technol. 36, 251–258. http://dx.doi.org/10.1016/S0273-1223(97)00688-4
10. Anderson, M. (2002) Encouraging prospects for recycling incinerated sewagesludgeash (ISSA) into clay–based building products. J. Chem. Technol. Biot. 352–360.
11. Lin, D.F.; Chang, W.C.; Yuan, C. (2008) Production and characterization of glazed tiles containing incinerated sewagesludge. Waste Manage, 28 [3], 502–508. http://dx.doi.org/10.1016/j.wasman.2007.01.018 PMid:17433656
12. Bhatty, J.I.; Reid K.J. (1989) Compressive Strength of Municipal Sludge Ash Mortars. ACI Mater. J. 86, 394–400.
13. Khanbilvardi, R.; Afshari, S. (1995) Sludge ash as fine aggregate for concrete mix. J. Environ. Eng.-ASCE, 121, 633–638. http://dx.doi.org/10.1061/(ASCE)0733-9372(1995)121:9(633)
14. Wainwright, P.; Cresswell, D. (2001) Synthetic aggregates from combustion ashes using an innovative rotary kiln. Waste Manage, 21, 241–246. http://dx.doi.org/10.1016/S0956-053X(00)00096-9
15. Latosinska, J.; Zygadlo, M. (2009) Effect of sewage sludge addition on porosity of lightweight expanded clay aggregate (LECA) and level of heavy metals leaching from ceramic matrix. Environ. Prot. Eng. 35, 189–196.
16. Cheeseman, C.R.; Virdi, G.S. (2005) Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resour. Conserv. Recy. 45, 18–30. http://dx.doi.org/10.1016/j.resconrec.2004.12.006
17. Pan, S.C.; Tseng, D.H.; Lee, C. (2002) Use of sewage sludge ash as fine aggregate and pozzolan in Portland cement mortar. Journal of Solid Waste Technology and Management, 28, 121–130.
18. Al Sayed, M.H.; Madany, I.M.; Buali, A.R.M. (1995) Use of sewage sludge ash in asphaltic paving mixes in hot regions. Constr. Build. Mater. 9, 19–23. http://dx.doi.org/10.1016/0950-0618(95)92856-C
19. Donatello, S.; Tong, D.; Cheeseman, C.R. (2010) Production of technical grade phosphoric acid from incinerator sewage ash (ISSA). Waste Manage. 30, 1634–1642. http://dx.doi.org/10.1016/j.wasman.2010.04.009
20. Monzó J.; Payá J.; Borrachero M.V.; Córcoles, A. (1996) Use of sewage sludge ash (SSA)–cement admixtures in mortars. Cem. Concr. Res. 26, 1389–1398. http://dx.doi.org/10.1016/0008-8846(96)00119-6
21. Monzó, J.; Payá, J.; Borrachero, M.V.; Peris, E. (1999) Mechanical Behavior of Mortars Containing Sewage Sludge Ash (SSA) and Portland Cement with Different Tricalcium Aluminate Content. Cem. Concr. Res. 29, 87–94. http://dx.doi.org/10.1016/S0008-8846(98)00177-X
22. Alcocel, E.G.; Garcés, P.; Martínez J.J.; Payá, J.; García, L. (2006) Effect of sewage sludge ash (SSA) on the mechanical performance and corrosion levels of reinforced Portland cement mortars. Mater. Construcc. 56 [282], 31–43.
23. Payá, J.; Monzo, J.; Borrachero, M.V.; Amahjour, F.; Girbés, I.; Velázquez, S.; Ordonez, L.M. (2002) Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash. J. Chem. Technol. Biot. 77, 331–335. http://dx.doi.org/10.1002/jctb.583
24. Donatello, S.; Tyrer, S.; Cheeseman, C.R. (2010) Comparison of test methods to assess pozzolanic activity. Cem. Concr. Comp. 32, 121–127. http://dx.doi.org/10.1016/j.cemconcomp.2009.10.008
25. Pan, S.C.; Tseng, D.H.; Lee, C.C.; Lee, C. (2003) Influence of the fineness of sewage sludge ash on the mortar properties. Cem. Concr. Res. 33, 1749–1754. http://dx.doi.org/10.1016/S0008-8846(03)00165-0
26. Monzó, J.; Payá, J.; Borrachero, M.V.; Girbés, I. (2003) Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Manage. 23, 373–381. http://dx.doi.org/10.1016/S0956-053X(03)00034-5
27. Donatello, S.; Freeman-Pask, A.; Tyrer, S.; Cheeseman, C.R. (2010) Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cem. Concr. Comp. 32, 54–61. http://dx.doi.org/10.1016/j.cemconcomp.2009.09.002
28. Chen, C.-H.; Chiou, I.-J.; Wang, K.-S. (2006) Sintering effect on cement bonded sewage sludge ash. Cem. Concr. Comp. 28, 26–32. http://dx.doi.org/10.1016/j.cemconcomp.2005.09.003
29. Garcés, P.; Carrión, M.P.; García-Alcocel, E.; Payá, J.; Monzó, J.; Borrachero, M.V. (2008) Mechanical and physical properties of cement blended with sewage sludge ash. Waste Manage, 28, 2495–2502. http://dx.doi.org/10.1016/j.wasman.2008.02.019
30. Pérez-Carrión, J.M.; Garcés, P. García, E.; Payá, J.; Monzó, J.; Borrachero, M.V. (2005) Hormigonesecológicos (green concrete): reutilización de cenizas de lodos de depuradora en la preparación de hormigones. Actas VI Congreso Nacional de Materiales Compuestos, 27–29 June, Valencia (Spain).
31. Lapa, N.; Barbosa, R.; Lopes, M.H.; Mendes, B.; Abelha, P.; Gulyurtlu, I.; Santos-Oliveira, J.S. (2007) Chemical and ecotoxicological characterization of ash esobtained from sewage sludge combustión in a fluidised bed reactor. J. Haz. Mat. 147, 175–183. http://dx.doi.org/10.1016/j.jhazmat.2006.12.064
32. Donatello, S.; Tyrer, M.; Cheeseman, C.R. (2010) EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash. Waste Manage. 30, 63–71. http://dx.doi.org/10.1016/j.wasman.2009.09.028
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.