Estudio del efecto de las características fractales de los áridos sobre el comportamiento mecánico de arena y grava cementada
DOI:
https://doi.org/10.3989/mc.2021.13020Palabras clave:
Áridos, Hormigón, Proporciones de mezcla, Módulo de elasticidad, Propiedades mecánicasResumen
La presencia de áridos no cribados en arena y grava cementadas (CSG) hacen que sus propiedades difieran de las del hormigón convencional. Se introduce la teoría fractal para estudiar los efectos de las características de los áridos en las propiedades de CSG, cuantificando la gradación y la forma de los áridos. La simulación numérica y el análisis muestran que: (1) la gradación mejorada de los áridos disminuye la dimensión fractal de la gradación y aumenta la tensión máxima y el módulo elástico de CSG; (2) áridos de formas más irregulares aumentan la dimensión fractal de la forma y disminuyen la tensión máxima y el módulo elástico de CSG; (3) la relación cuantificada entre las características de los áridos y las propiedades mecánicas de CSG proporcionan una base teórica para la asignación de los áridos en el diseño de ingeniería y en la construcción. La mezcla de los áridos artificiales puede mejorar la gradación de los áridos, pero reduce el rendimiento de CSG. Combinaciones adecuadas de áridos artificiales y naturales logran un rendimiento óptimo de CSG; en este estudio, esto se logra añadiendo un 20% de áridos artificiales con gradación estándar.
Descargas
Citas
Feng, W. (2013) Research on characteristics of damming materials for cemented gravel dam and engineering application, China Institute of Water Resources and Hydropower Research, Beijing, China.
González-Fonteboa, B.; Seara-Paz, S.; de Brito, J.; González-Taboada, I.; Martínez-Abella, F.; Vasco-Silva, R. (2018) Recycled concrete with coarse recycled aggregate. An overview and analysis. Mater. Construcc. 68 [330], e151. https://doi.org/10.3989/mc.2018.13317
Shafigh, P.; Asadi, I.; Akhiani, A.R.; Mahyuddin, N.B.; Hashemi, M. (2020) Thermal properties of cement mortar with different mix proportions. Mater. Construcc. 70 [339], e224. . https://doi.org/10.3989/mc.2020.09219
Jin, L.; Yu, W.; Du, X.; Yang, W. (2020) Meso-scale simulations of size effect on concrete dyna-mic splitting tensile strength: Influence of aggregate content and maximum aggregate size. Eng. Fract. Mech. 230, 106979. https://doi.org/10.1016/j.engfracmech.2020.106979
Huang, X.F. (2010) Effect of coarse aggregate shape on concrete physical and mechanical properties, Zhejiang University of Technology, Zhengjiang, China (2010).
Guo, D. (2016) Research on the main technical requirements of high-quality concrete aggregates, Beijing University of Architecture, Beijing, China (2016).
Sánchez-Roldán, Z.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Martín-Morales, M. (2020) Microstructural analysis of concretes manufactured with recycled coarse aggregates pre-soaked using different methods. Mater. Construcc. 70 [339], e228. https://doi.org/10.3989/mc.2020.16919
Zhang, Y.; Yan, L.; Wang, S.; Xu, M. (2019) Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete. Mater. Construcc. 69 [334], e184. https://doi.org/10.3989/mc.2019.01418
Xiong, X.Y.; Xiao, Q.S. (2019) A unified meso-scale simulation method for concrete under both tension and compression based on Cohesive Zone Model. J. Hydraul. Eng. 50, 448-462.
Wang, X.F.; Yang, Z.J.; Yates, J.R.; Jivkov, A.P., Zhang, Ch.. (2015) Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Constr. Build. Mater. 75, 35-45. https://doi.org/10.1016/j.matdes.2015.02.015
Zheng, J.C.; Zhu, L.; Peng, G. (2013) Numerical simulation of concrete axial tensile performance based on mesomechanics. Engineering Journal of Wuhan University. 46, 188-193.
Hou, Y.X.; Wang, L.C. (2009) Generating method of random polygon aggregate in mesoscopic simulation of concrete. J. Archit. Civil. Eng. 26, 59-65.
Yu, B.; Li, J. (2001) Some fractal characters of porous media. Fractals. 9 [3], 365-372. https://doi.org/10.1142/S0218348X01000804
Zhang, J.X.; Jin, S.S. (2013) Micropore structure of cement concrete and its function, Science Press, Beijing, China.
Gao, S.; Guo, Y.X.; Wu, B.Q. (2019) Research on Fractal characteristics of the recycled fi-ne aggregate. Concrete. 6, 78-83.
Hu, H-x.; Zhang, Q.; Ding, D-h. (2010) Study on the mechanical properties of the concrete materials based on fractal theory. Concrete. 6, 31-33,36.
Li, W.T.; Sun, H-q.; Xing, J. (2003) Theory of fractal applied to concrete study. Journal of Hebei University of Technology. 32, 13-16.
Mandelbrot, B.B. (1982) The fractal geometry of nature. W. H. Freeman, New York.
Chang, Y.J. (2018) Fractal characteristics and the application for asphalt mixture grading with the curve models. Journal of Heilongjiang Institute of Technology. 32, 6-10.
Bai, W.; Peng, G. (2007) Monte-Carlo method aggregate random structures for concretes by Ansys, Journal of Shihezi University (Natural Science). 25, 504-507.
Rong, M.D.; Guo, Z.Y.; Wu, X.Q. (2017) Ansys implementation of two-dimensional and three-dimensional random aggregate model generated by Monte Carlo method. Construction Machinery Technology and Management. 30, 71-73.
Li, Z.W. (2007) Monte Carlo simulation of related random variables. Stat. Decis. 5, 9-10.
Schlangen, E.; van Mier, J.G.M. (1992) Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater. Struct. 25, 534-542. https://doi.org/10.1007/BF02472449
Guo, L.X.; Zhong, L.; Zheng, C.Y. (2019) Damage and destruction research of recycled concrete with waste brick based on modified random aggregate model. J. Basic Eng. 27, 1390-1398.
Xiao, J.Z.; Du, J.T. (2008) Complete stress-strain curve of concrete with different recycle coarse aggregates under uniaxial compression. J. Build. Mater. 11, 1445-1449.
Peng, Y.J.; Wang, Y.H. (2006) Numerical analyses for fracture process and failure mechanism of concrete on meso-level. Chin. Saf. Sci. J. 16, 110-114.
Shang, X.Y.; Yang, J.W.; Li, J.S. (2020) Fractal characteristics of meso-failure cracks in re-cycled coarse aggregate concrete based on CT image. Acta. Mater. Compos. Sin.
Prokopski, G.; Halbiniak, J. (2000) Interfacial transition zone in cementitious materials. Cem. Concr. Res. 30 [4], 579-583. https://doi.org/10.1016/S0008-8846(00)00210-6
Xu, Y.S. (2017) Research on mesoscopic model of concrete considering aggregate shape, Southeast University, Nanjing.
Guo, L.; Zhang, Y.; Zhong, L.; Wang, M.; Zhu, X. (2020) Study on macroscopic and mesoscopic mechanical behavior of CSG based on inversion of mesoscopic material parameters. Sci. Eng. Compos. Mater. 27, 65-72. https://doi.org/10.1515/secm-2020-0007
Ashraf, W.B.; Noor, M.A. (2011) Performance-evaluation of concrete properties for different combined aggregate gradation approaches. Proce. Eng. 14, 2627-2634. https://doi.org/10.1016/j.proeng.2011.07.330
Du, C-B.; Sun, L-G. (2007) Numerical simulation of aggregate shapes of two-dimensional concrete and its application. J. Aerospace Eng. 20 [3], 172-178. https://doi.org/10.1061/(ASCE)0893-1321(2007)20:3(172)
Du, C-B.; Sun, L-G.; Jiang, S.Y. (2013) Numerical simulation of aggregate shapes of three-dimensional concrete and its application. J. Aerospace Eng. 26 [3], 515-527. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000181
Cui, W.; Yan, W-s.; Song, H-f.; Wu, W-l. (2020) DEM simulation of SCC flow in L-Box set-up: Influence of coarse aggregate shape on SCC flowability. Cem. Concr. Comp. 109, 103558. https://doi.org/10.1016/j.cemconcomp.2020.103558
Tian, M.Y. (2019) Numerical calculation of concrete uniaxial mechanical properties based on mesoscale, Taiyuan University of Technology, Taiyuan, China.
Chen, P.; Chen, X.; Wang, Y.; Wang, P. (2020) Preliminary study on the upcycle of non-structural construction and demolition waste for waste cleaning. Mater. Construcc. 70 [338], e220. https://doi.org/10.3989/mc.2020.13819. https://doi.org/10.3989/mc.2020.13819
Chen, H.Q.; Ma, H.F.; Li, Y.C. (2007) Influence of random aggregate shapes on flexural strength of dam concrete. J. Chin. Inst. Water. Resour. Hydr. Res. 04, 241-246.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
National Key Research and Development Program of China
Números de la subvención 2018YFC0406803
North China University of Water Conservancy and Electric Power
Números de la subvención YK2020-06