Comportamiento a tracción uniaxial y caracterización de los mecanismos de materiales base cemento reforzados con fibras multi-escala

Autores/as

  • L. Li Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University - - College of Water Resources and Architectural Engineering, Northwest A&F University - Faculty of Infrastructure Engineering, Dalian University of Technology - State Key Laboratory of Green Building Materials, China Building Materials Academy https://orcid.org/0000-0003-3966-6363
  • M. Cao Faculty of Infrastructure Engineering, Dalian University of Technology https://orcid.org/0000-0002-7917-4710
  • Z. Li Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University - College of Water Resources and Architectural Engineering, Northwest A&F University https://orcid.org/0000-0002-6816-0575
  • W. Zhang State Key Laboratory of Green Building Materials, China Building Materials Academy https://orcid.org/0000-0002-9292-2867
  • D. Shi State Key Laboratory of Green Building Materials, China Building Materials Academy https://orcid.org/0000-0002-6175-2850
  • K. Shi School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics https://orcid.org/0000-0001-9513-2679

DOI:

https://doi.org/10.3989/mc.2022.05521

Palabras clave:

Fibra híbrida, Fibra de CaCO3, Material cementosos, Tracción uniaxial, Cálculos, Micro-mecanismos

Resumen


Se han estudiado las propiedades de tracción uniaxial de un material cementante reforzado con fibras multiescala (MSFRCM) de acero, de alcohol polivinílico (PVA) y de carbonato cálcico (CW). Los resultados mostraron que las CW mejoraron la rigidez, la resistencia, la deformación máxima y la tenacidad del material cementoso reforzado con fibra híbrida de acero-PVA sometido a tracción uniaxial. Las CW no solo jugaron un papel relevante en la etapa de bajas deformaciones, sino que también mejoraron la capacidad de retención de carga y la tenacidad del material cementante híbrido reforzado con fibras durante la etapa de deformaciones elevadas. Se han establecido modelos computacionales para evaluar la resistencia a la tracción uniaxial y la tenacidad del MSFRCM, y los resultados coincidieron con los resultados de las pruebas así como de los datos de la literatura. Los estudios microestructurales mostraron que el acero y las fibras de PVA formaron una ITZ débil debido al “efecto pared”. Las CW optimizaron eficazmente la estructura de la ITZ del acero y las fibras de PVA a través de efectos físicos y químicos como relleno, formación de puentes y mejora de la orientación de la Ca(OH)2. Las fibras de acero, las fibras de PVA y las CW unieron las fisuras de los MSFRCM a nivel macro, meso y microscópico, respectivamente. Como resultado de ello, se observó un efecto de cadena de fibras que mejoró el efecto híbrido positivo entre las fibras multiescala.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Xu, L.; Huang, L.; Chi, Y.; Mei, G. (2016) Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete. Aci Mater. J. 113 [2]: 219-229. https://doi.org/10.14359/51688641

Yang, Y.; Zhou, Q.; Deng, Y.; Lin, J. (2020) Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites. Cem. Concr. Compos. 108,103509. https://doi.org/10.1016/j.cemconcomp.2019.103509

Zhang, Y.; Ju, J.W.; Zhu, H.; Yan, Z. (2020) A novel multi-scale model for predicting the thermal damage of hybrid fiber-reinforced concrete. Int. J. Damage Mech. 29 [1], 19-44. https://doi.org/10.1177/1056789519831554

Bao, J.; Li, S.; Zhang, P.; Ding, X.; Xue, S.; Cui, Y. (2020) Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete. Constr. Build. Mater. 239, 117845. https://doi.org/10.1016/j.conbuildmat.2019.117845

Bao, J.; Xue, S.; Zhang, P.; Dai, Z.; Cui, Y. (2020) Coupled effects of sustained compressive loading and freeze-thaw cycles on water penetration into concrete. Struct. Concrete. 22 [S1], E944-E954. https://doi.org/10.1002/suco.201900200

Li, L.; Cao, M.; Xie, C.; Yin, H. (2019) Effects of CaCO3 whisker, hybrid fiber content and size on uniaxial compressive behavior of cementitious composites. Struct. Concrete. 20 [1], 506-518. https://doi.org/10.1002/suco.201800185

Cao, M.; Li, L.; Shen, S. (2019) Influence of reinforcing index on rheology of fiber-reinforced mortar. Aci Mater. J. 116 [6], 95-105. https://doi.org/10.14359/51716816

Cao, M.; Li, L.; Khan, M. (2018) Effect of hybrid fibers, calcium carbonate whisker and coarse sand on mechanical properties of cement-based composites. Mater. Construcc. 68 [330], e156. https://doi.org/10.3989/mc.2018.01717

Cao, M.; Li, L. (2018) New models for predicting workability and toughness of hybrid fiber reinforced cement-based composites. Constr. Build. Mater. 176, 618-628. https://doi.org/10.1016/j.conbuildmat.2018.05.075

Li, L.; Cao, M. (2018) Influence of calcium carbonate whisker and polyvinyl alcohol- steel hybrid fiber on ultrasonic velocity and resonant frequency of cementitious composites. Constr. Build. Mater. 188, 737-746. https://doi.org/10.1016/j.conbuildmat.2018.08.154

Yang, Y.; Deng, Y.; Li, X. (2019) Uniaxial compression mechanical properties and fracture characteristics of brucite fiber reinforced cement-based composites. Compos. Struct. 212, 148-158. https://doi.org/10.1016/j.compstruct.2019.01.030

Pan, J.; Cai, J.; Ma, H.; Leung, C.K.Y. (2018) Development of multiscale fiber-reinforced engineered cementitious composites with pva fiber and CaCO3 whisker. ASCE J. Mater. Civ. Eng. 30 [6], 40181066. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002305

Li, L.; Li, Z.; Cao, M.; Tang, Y.; Zhang, Z. (2021) Nanoindentation and porosity fractal dimension of calcium carbonate whisker reinforced cement paste after elevated temperatures (up to 900ºC). Fractals. 29 [2], 2140001. https://doi.org/10.1142/S0218348X21400016

Wang, B.; Han, Y.; Liu, S. (2013) Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Constr. Build. Mater. 46, 8-12. https://doi.org/10.1016/j.conbuildmat.2013.04.014

Metaxa, Z.S.; Konsta-Gdoutos, M.S.; Shah, S.P. (2013) Carbon nanofiber cementitious composites. Effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 36, 25-32. https://doi.org/10.1016/j.cemconcomp.2012.10.009

Li, L.; Cao, M.; Yin, H. (2019) Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste. Cem. Concr. Compos. 104, 103350. https://doi.org/10.1016/j.cemconcomp.2019.103350

Li, L.; Xie, C.; Cao, M.; Zhou, X.; Li, Z. (2021) Synergistic effect between CaCO3 whisker and steel-pva fibre cocktail in cement-based material at elevated temperature. ASCE J. Mater. Civ. Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004103

Khan, M.; Cao, M.; Ali, M. (2018) Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Constr. Build. Mater. 192, 742-753. https://doi.org/10.1016/j.conbuildmat.2018.10.159

Wille, K.; El-Tawil, S.; Naaman, A.E. (2014) Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cem. Concr. Compos. 48, 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015

Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. (2012) Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem. Concr. Compos. 34 [2], 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009

Mansour, M.Y.; Hsu, T.T.C.; Mo, Y.L. (2009) Constitutive relations of cracked reinforced concrete with steel fibers. ACI Special Publication. 265, 101-122. Retrieved from https://www.concrete.org/publications/internationalconcreteabstractsportal?m=details&i=51663292.

Lu, C.; Leung, C.K.Y.; Li, V.C. (2017) Numerical model on the stress field and multiple cracking behavior of Engineered Cementitious Composites (ECC). Constr. Build. Mater. 133, 118-127. https://doi.org/10.1016/j.conbuildmat.2016.12.033

Cao, M.; Li, L.; Xu, L. (2017) Relations between rheological and mechanical properties of fiber reinforced mortar. Comput. Concr. 20 [4], 449-459.

Li, V.C.; Kong, H.J.; Chan, Y.W. (1998) Development of self-compacting engineered cementitious composites. J. Cem. Concr. Compos. 25 [2], 301-309.

Li, Q.; Gao, X.; Xu, S. (2016) Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high-volume fly ash. Cem. Concr. Compos. 72, 201-212. https://doi.org/10.1016/j.cemconcomp.2016.05.011

Cao, M.; Li, L.; Yin, H.; Ming, X. (2019) Microstructure and strength of calcium carbonate (CaCO3) whisker reinforced cement paste after exposed to high temperatures. Fire Technol. 55 [6], 1983-2003. https://doi.org/10.1007/s10694-019-00839-3

Yang, Y.; Fu, S.; Li, X. (2017) Mechanical attributes of uniaxial compression for calcium carbonate whisker reinforced oil well cement pastes. Adv. Mater. Sci. Eng. 2017, 2939057. https://doi.org/10.1155/2017/2939057

Xu, L.; Deng, F.; Chi, Y. (2017) Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. Constr. Build. Mater. 145, 619-638. https://doi.org/10.1016/j.conbuildmat.2017.04.035

Publicado

2022-02-17

Cómo citar

Li, L. ., Cao, M. ., Li, Z. ., Zhang, W. ., Shi, D. ., & Shi, K. . (2022). Comportamiento a tracción uniaxial y caracterización de los mecanismos de materiales base cemento reforzados con fibras multi-escala. Materiales De Construcción, 72(345), e271. https://doi.org/10.3989/mc.2022.05521

Número

Sección

Artículos

Datos de los fondos

Chinese Universities Scientific Fund
Números de la subvención 2452020054

Natural Science Basic Research Program of Shaanxi Province
Números de la subvención 2021JQ-174