Microscopic observations of sites and forms of ettringite in the microstructure of deteriorated concrete

Authors

DOI:

https://doi.org/10.3989/mc.2022.15521

Keywords:

Alkali-silica reaction, Delay-ettringite formation (DEF), Scanning electron microscopy (SEM), Ettringite, Petrography

Abstract


The determination of delayed ettringite formation (DEF) in hardened concrete relying simply on the identification of ettringite by electron microscopy or powder X-ray diffractometry can be imperfect because of the high risk of missing other possible deterioration phenomena. The presence of ettringite can be easily biased as an indication of DEF while the actual cause of deterioration is ASR. This paper identifies the deterioration causes and presents different ettringite formation factors based on the petrological observation results. The experiments conditions including depth of carbonation, mix proportions of concrete, curing temperature and others were considered. The deterioration of the samples seem to be correlated to ASR, except for the precast concrete product which presented DEF. In order to determine the deterioration causes and demonstrate the importance of petrological approach, different observations using the same methods were carried out on a concrete specimen blended with fly ash showing some cracks.

Downloads

Download data is not yet available.

References

Taylor, H.F.W.; Famy, C.; Scrivener, K.L. (2001) Delayed ettringite formation. Cem. Concr. Res. 31 [5], 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5

Heinz, D.; Ludwig, U. (1987) Mechanism of secondary ettringite formation in mortars and concretes subjected to heat treatment. Concrete durability. ACI SP-100. 2, 2059-2071.

Scrivener, K.L.; Taylor, H.F.W. (1993) Delayed ettringite formation: A microstructural and microanalytical study. Adv. Cem. Res. 5 [20], 139-146. https://doi.org/10.1680/adcr.1993.5.20.139

Johansen, V.; Thaulow, J.; Skalny, J. (1993) Simultaneous presence of alkali-silica gel and ettringite in concrete. Adv. Cem. Res. 5 [17], 23-29. https://doi.org/10.1680/adcr.1993.5.17.23

Shimada, Y.; Vagn, C.; Johansen, F.; MacGregor, M.; Thomas, O. (2005) Chemical path of ettringite formation in heat-cured mortar and its relationship to expansion: A literature review. PCA Res. Dev. Bul. RD136.

Kawabata, Y. (2018) Diagnosis on expansion of heat-cured precast concrete blocks due to delayed ettringite formation in Japan. 6th ICDCS. 516-524.

Fujikane, M.; Nakahara, K.; Nakamura, T. (2009) A report about the deterioration of the concrete product by delayed ettringite formation (DEF). Civil Eng. J. 51 [11], 38-41. (in Japanese)

Poole, A.B.; Ian, S. (2016) Concrete Petrography. CRC Press. 420. https://doi.org/10.1201/b18688

Thomas, M.D.A.; Folliard, K.; Drimalas, T.; Ramlochan, T. (2008) Diagnosing delayed ettringite formation in concrete structures. Cem. Conc. Res. 38 [6], 841-847. https://doi.org/10.1016/j.cemconres.2008.01.003

Shayan, A.; Quick, G.W. (1992) Microscopic features of cracked and uncracked concrete railways sleepers. ACI Mater. J. 89, 348-364. https://doi.org/10.14359/2560

Larive, C.; Louarn, N. (1992) Diagnosis of alkali-aggregate reaction and sulphate reaction in French structures. Proce. 9th ICAAR. 587-598.

Shayan, A.; Quick, G.W. (1992) Relative importance of deleterious reactions in concrete: formation of AAR products and secondary ettringite. Adv. Cem. Res. 4 [16], 149-157. https://doi.org/10.1680/adcr.1992.4.16.149

Hime, W.G.; Marusin, S.; Jugovic, Z.; Martinek, R.; Cechner, R.; Backus, L. (2000) Chemical and petrographic analyses and ASTM test procedures for the study of delayed ettringite formation. Cem. Conc. Agg. 22 [2], 160-168. https://doi.org/10.1520/CCA10476J

Skalny, J.; Johansen, V.; Thoulow, N.; Palomo, A. (1996) DEF: As a form of sulfate attack. Mater. Construcc. 46 [244], 5-29. https://doi.org/10.3989/mc.1996.v46.i244.519

Marusin, S.L. (1993) SEM studies of DEF in hardened concrete. Proc. 15th ICCM, Dallas. 289-299.

Marusin, S.L. (1994) A Simple treatment to distinguish alkali-silica gel from delayed ettringite formations in concrete. Mag. Conc. Res. 46 [168], 163-166. https://doi.org/10.1680/macr.1994.46.168.163

João, C.; António, B.R. (2019) Evaluation of damage in concrete from structures affected by internal swelling reactions - A case study. Procedia Stru. Integ. 17, 80-89. https://doi.org/10.1016/j.prostr.2019.08.012

Owsiak, Z. (2010) The effect of delayed ettringite formation and alkali-silica reaction on concrete microstructure. Ceramics Silikaty. 54 [3], 277-283. Retrieved from https://www.irsm.cas.cz/materialy/cs_content/2010/Owsiak_CS_2010_0000.pdf.

Tepponen, P.; Eriksson, B.E. (1987) Damage in concrete railway sleepers in Finland. Nordic Conc. Res. 6, 199-209.

Shayan, A.; Quick, G.W. (1994) Alkali-aggregate reaction in concrete railway sleepers from Finland. Proc. 16th International Conference on cement microscopy. 69-79. https://doi.org/10.1016/0958-9465(94)90012-4

Jensen, V.; Sujjavanich, S. (2016) ASR and DEF in concrete foundations in Thailand. Proc. 15th ICAAR, Sao Paulo, Brazil.

Jensen, V.; Sujjavanich, S. (2016) Alkali silica reaction in concrete foundation in Thailand. Proc. 15th ICAAR, Sao Paulo, Brazil.

Hirono, S.; Yamada, K.; Ando, Y.; Sato, T.; Yamada; K.; Kagimoto, H.; Torii, K. (2016) ASR found in Thailand and tropical regions of southeast asia. Proc. 15th ICAAR, Sao Paulo, Brazil.

Awasthi, A.; Matsumoto, K.; Nagai, K.; Asamoto, S.; Goto, S. (2017) Investigation on possible causes of expansion damages in concrete - a case study of sleepers in Indian Railways. J. Asian Conc. Fed. 3 [1], 49-66. https://doi.org/10.18702/acf.2017.06.3.1.49

Ando, Y.; Katayama, T.; Asamoto, S.; Nagai, K. (2018) Investigation to determine the causes of the cracks occurred in the PC sleepers of Indian railways and interaction of ASR and DEF. Proc. JCI Annual Convention. 40 [2], 909-914. (in Japanese). Retrieved from http://data.jci-net.or.jp/data_html/40/040-01-1146.html.

Ando, Y.; Hirono, S.; Katayama, Y.; Torii, K. (2018) Microscopic observation of sites and forms of ettringite in the microstructure of deteriorated concrete. Cem. Sci. Conc. Tec. 72 [1], 2-9. (in Japanese). https://doi.org/10.14250/cement.72.255

Nomura, M.; Ura, S.; Ishii, K.; Torii, K. (2017) Influence of hot asphalt paving on steel bridge reinforced concrete slabs and detailed analysis on cores from real structures. Proc. JCI Annual Convention. 39 [1], 931-936. (in Japanese).

Hashimoto, T.; Kanai, S.; Hirono, S.; Torii, K. (2015) A consideration on improvement in durability aspects of concrete poles. Cem. Sci. Conc. Tec. 69 [1], 550-557. (in Japanese) https://doi.org/10.14250/cement.69.550

Mori, H.; Yamada, K.; Iwaki, I.; Nagataki, S. (2018) Demonstration experiment on durability of concrete containers storing incineration fly ash contaminated with radionuclides and technical requirements of such containers. Conc. J. 56 [4], 296-303. (in Japanese). Retrieved from https://www.jstage.jst.go.jp/article/coj/56/4/56_296/_article/-char/ja/. https://doi.org/10.3151/coj.56.4_296

Durand, B.; Marchand, B.; Larivere, R.; Bergeron, J.M.; Pelletier, G.; Ouimet, M.; Berard, J.; Katayama, T. (2004) A special history case about severe damages due to freezing and thawing combined with sulfate migration and ASR at Rapides-Des-Quinze hydraulic structures. Proc. 12th ICAAR.

Jones, T.N.; Poole, A.B. (1986) Alkali-silica reaction in several U.K. concretes: The effect of temperature and humidity on expansion, and the significance of ettringite development. Proc. 7th ICAAR. 446-451.

Shayan, A.; Ivanusec, I. (1996) An experimental clarification of the association of delayed ettringite formation with alkali aggregate reaction. Cem. Conc. Comp. 18 [3], 161-170. https://doi.org/10.1016/0958-9465(96)00012-1

Chatterji, S. (1978) Mechanism of the CaCl2 attack on Portland cement concrete. Cem. Concr. Res. 8 [4], 461-467. https://doi.org/10.1016/0008-8846(78)90026-1

Michaud, V.; Sorrentino, D. (2003) Influence of temperature and alkali concentration on thermodynamical stability of sulphoaluminate phases. Proc. 11th ICCC. 2033-2043.

Published

2022-04-25

How to Cite

Ando, Y. ., Shinichi, H. ., Katayama, T. ., & Torii, K. . (2022). Microscopic observations of sites and forms of ettringite in the microstructure of deteriorated concrete. Materiales De Construcción, 72(346), e283. https://doi.org/10.3989/mc.2022.15521

Issue

Section

Research Articles