On-site corrosion monitoring experience in concrete structures: potential improvements on the current-controlled polarization resistance method

Authors

DOI:

https://doi.org/10.3989/mc.2021.11221

Keywords:

Concrete, Steel reinforcement, Corrosion, Durability

Abstract


The need for proactive maintenance of reinforced concrete structures with non-destructive testing (NDT) is less disputable today than ever. One of the most promising strategies in this regard is the in-situ measurement of the reinforcement corrosion rate. This study explored the reliability of modulated current confinement method (hereafter MCC) based on a review of in-situ measurements made with that technique in real-life structures over a 13-year period. The most prominent problems detected included defective confinement of the polarization current in low-resistivity environments and over-polarization of passive reinforcement. The findings, which showed enhancement of MCC reliability to depend on improving the electrochemical current regulation and control methodologies presently in place, are being applied to improve the design of the next generation of corrosion meters.

Downloads

Download data is not yet available.

References

EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, CEN, 2015.

Martínez, I.; Andrade, C. (2011) Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison. Mater. Corros. 62 [10], 932-942. https://doi.org/10.1002/maco.200905596

Scully, J.R. (2000) Polarization resistance method for determination of instantaneous corrosion rates. Corros. 56 [2], 199-218. https://doi.org/10.5006/1.3280536

So, H.S.; Millard, S.G. (2007) Assessment of corrosion rate of reinforcing steel in concrete using Galvanostatic pulse transient technique. Int. of Concrete. Str. and Mat. 1 [1], 83-88. https://doi.org/10.4334/IJCSM.2007.1.1.083

Gonzalez, J.A.; Albeniz, J.; Feliu, S. (1996) Polarization resistance constant B values for 20 different metalenvironment systems. Rev. Metal. 32 [1], 10-7.

Andrade, C.; Alonso, C. (2004) Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mat. Struct. 37 [9], 623-643. https://doi.org/10.1007/BF02483292

Feliu, S.; Gonzalez, J.A.; Feliu, V.; Escudero, L.; Rodriguez, I.A.; Ausin, V.; et al. inventors; CSIC Consejo Superior Investigaciones Científicas; Geotec Cimientos; Geotecnia y Cimientos Geocisa Sa; Consejo Superior Investigacion, assignee. Electrochemical measuring-corrosion rate of reinforcement in concrete-using DC to obtain corrosion rate taking into account reinforcement area affected by electrical signal patent CA2042883-A; ES2024268-A; US5259944-A.

Krebs, N.; Fabrin, K.; Frolund, T.; Kofoed, B.; Langkjaer, C.; Klinghoffer, O. inventors; Force Inst, assignee. Determining rate of corrosion in reinforced concrete-uses galvanostatic pulse method in connection with reference electrode and current density controlled counterelectrode patent WO9709603-A1; DK9500981-A; AU9667860-A; DK171925-B.

Elsener, B. (2005) Corrosion rate of steel in concrete- Measurements beyond the Tafel law. Corr. Sci. 47 [12], 3019-3033. https://doi.org/10.1016/j.corsci.2005.06.021

Frølund, T.; Jensen, M.F.; Bassler, R. (2002) Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In First International Conference on Bridge Maintenance, Safety and Management IABMAS. Barcelona (Spain), 14-17 July.

Vedalakshmi, R.; Balamurugan, L.; Saraswathy, V.; Kim, S.H.; Ann, K.Y. (2010) Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies. KSCE J. Civil Engineer. 14 [6], 867-877. https://doi.org/10.1007/s12205-010-1023-6

Xu, J.; Yao, W. (2010) Detecting the efficiency of cathodic protection in reinforced concrete by use of galvanostatic pulse technique. Adv. Mat. Res. 177, 584-589. https://doi.org/10.4028/www.scientific.net/AMR.177.584

Dou, Y.T.; Hao, B.H.; Meng, B.; Xie, J.; Dong, M.L.; Zhang, A.L. (2014) The study to the corrosion of reinforcing steel in concrete by using galvanostatic pulse technique. Appl. Mech. Mater. 501, 916-919. https://doi.org/10.4028/www.scientific.net/AMM.501-504.916

Martínez, I.; Andrade, C.; Rebolledo, N.; Bouteiller, V.; Marie-Victoire, E.; Olivier, G. (2008) Corrosion characterization of reinforced concrete slabs with different devices. Corrosion. 64 [2], 107-123. https://doi.org/10.5006/1.3280679

Poursaee, A.; Hansson, C.M. (2008) Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis. Corros. Sci. 50 [10], 2739-2746. https://doi.org/10.1016/j.corsci.2008.07.017

Martínez, I.; Andrade, C.; Rebolledo, N.; Luo, L.; De Schutter, G. (2010) Corrosion-inhibitor efficiency control: comparison by means of different portable corrosion rate meters. Corrosion. 66 [2], 026001-026001-12. https://doi.org/10.5006/1.3319663

Feliu, S.; González, J.A.; Feliu, S.Jr.; Andrade, C. (1990) Confinement of the electrical signal for in situ measurement of polarization resistance in reinforced concrete. ACI Mater. J. 87 [5], 457-60. https://doi.org/10.14359/1830

Martínez, I.; Andrade, C.; Fullea, J.; Bolano, J.A.; Jimenez, F.; Navarro, A. inventors; Consejo Superior de Investigaciones Cientificas (CNSJ-C) Geotecnia & Cimientos GEOCISA SA (GEOT-Non-standard) assignee. Method and device used to detect corrosion in cathodically-protected buried steel patent WO200203330-A1; ES2180440-A1; ES2180440-B1; AU2002314213-A1.

Martínez, I.; Andrade, C.; Fullea, J.; Castellote, M. inventors; Consejo Superior de Investigaciones Cientificas (CONSNon-standard), assignee. Method for measuring speed of corrosion in metal by induced polarization, involves maintaining two electrodes in contact with metal in order to carry out measurement, where electrodes are located in two intermediate points patent ES2237241-A1; ES2237241-B1.

Ramón, J.E.; Martínez, I.; Gandía-Romero, J.M.; Soto, J. (2021) An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: cell constants determination. Sensors. 21 [7], 2481. https://doi.org/10.3390/s21072481 PMid:33918485 PMCid:PMC8038218

Martínez, I.; Andrade, C.; Castillo, A. (2012) Corrosion evaluation in nuclear contention structures using electrochemical nondestructive techniques. Inf. Construcc. 64 [528], 519-528. https://doi.org/10.3989/ic.11.103

Castillo, A.; Andrade, C.; Martínez, I.; Rebolledo, N.; FernándezTroyano, L.; Ayuso, G.; Cuervo, J.; Junquera, J.; Santana, C.; Delgado, J. (2011) Assessment and monitoring of durability of shell structures in "Zarzuela Racecourse" Madrid. Inf. Construcc. 63 [524], 33-41. https://doi.org/10.3989/ic10.058

Martínez, I.; Andrade, C. (2009) Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31 [8], 545-554. https://doi.org/10.1016/j.cemconcomp.2009.05.007

Andrade, C.; Martínez, I.; Castellote, M. (2008) Feasibility of determining corrosion rates by means of stray currentinduced polarization. J. Appl. Electrochem. 38 [10], 1467-1476. https://doi.org/10.1007/s10800-008-9591-6

Andrade, C.; Martínez, I. (2005) Calibration by gravimetric losses of electrochemical corrosion rate measurement using modulated confinement of the current. Mat. Struct. 38 [9], 833-841. https://doi.org/10.1007/BF02481656

EN 206:2013+A2:2021. Concrete-Part 1: Specification, performance, production and conformity. British Standards Institution, 2021.

Newman, J. (1966) Resistance for flow of current to a disk. J. Electrochem. Soc. 113 [5], 501-502. https://doi.org/10.1149/1.2424003

Feliu, S.; Andrade, C.; González, J.A.; Alonso, C. (1996) A new method for in-situ measurement of electrical resistivity of reinforced concrete. Mat. Struct. 29 [6], 362-365. https://doi.org/10.1007/BF02486344

UNE 112010:2011 Spanish Standard, Corrosion of concrete reinforcement steel. Chloride determination for in-service concrete, 2011.

Feliu, V.; González, J.A.; Andrade, C.; Feliu, S. (1998) Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions. Corros. Sci. 40 [6], 975-993. https://doi.org/10.1016/S0010-938X(98)00036-5

UNE 112072:2011 Spanish Standard, Laboratory measurement of corrosion rate using the polarization resistance technique, 2011.

Andrade, C.; Alonso, M.C.; González, J.A. (1990) An initial effort to use the corrosion rate measurements for estimating rebar durability. In: Berke, N.S.; Chaker, V.; Whiting, D. editors. Corrosion rates of steel in concrete ASTM STP1065. Philadelphia: Am. Soc. Tes. Mat. 143. https://doi.org/10.1520/STP25013S

ASTM C876 − 15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken, PA, 2015.

Polder, R.B. (2001) Test methods for on site measurement of resistivity of concrete-A RILEM TC-154 technical recommendation. Constr. Build. Mater. 15 [2-3], 125-131. https://doi.org/10.1016/S0950-0618(00)00061-1

Andrade, C.; Martínez, I.; Alonso, C.; Fullea, J. (2001) New advanced electrochemical techniques/or on site measurements of reinforcement corrosion. Mat. Constr. 51 [263-264], 97-107. https://doi.org/10.3989/mc.2001.v51.i263-264.356

Martínez, I.; Castillo, A. (2020) Concrete surface applied corrosion inhibitors: on site evaluation by non-destructive electrochemical techniques. In REHABEND 2020 Congress Granada (Spain), 24-27 March, 2020.

Published

2021-10-15

How to Cite

Ramón, J. E. ., Castillo, Á. ., & Martínez, I. . (2021). On-site corrosion monitoring experience in concrete structures: potential improvements on the current-controlled polarization resistance method. Materiales De Construcción, 71(344), e265. https://doi.org/10.3989/mc.2021.11221

Issue

Section

Research Articles