On-site corrosion monitoring experience in concrete structures: potential improvements on the current-controlled polarization resistance method
DOI:
https://doi.org/10.3989/mc.2021.11221Keywords:
Concrete, Steel reinforcement, Corrosion, DurabilityAbstract
The need for proactive maintenance of reinforced concrete structures with non-destructive testing (NDT) is less disputable today than ever. One of the most promising strategies in this regard is the in-situ measurement of the reinforcement corrosion rate. This study explored the reliability of modulated current confinement method (hereafter MCC) based on a review of in-situ measurements made with that technique in real-life structures over a 13-year period. The most prominent problems detected included defective confinement of the polarization current in low-resistivity environments and over-polarization of passive reinforcement. The findings, which showed enhancement of MCC reliability to depend on improving the electrochemical current regulation and control methodologies presently in place, are being applied to improve the design of the next generation of corrosion meters.
Downloads
References
EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, CEN, 2015.
Martínez, I.; Andrade, C. (2011) Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison. Mater. Corros. 62 [10], 932-942. https://doi.org/10.1002/maco.200905596
Scully, J.R. (2000) Polarization resistance method for determination of instantaneous corrosion rates. Corros. 56 [2], 199-218. https://doi.org/10.5006/1.3280536
So, H.S.; Millard, S.G. (2007) Assessment of corrosion rate of reinforcing steel in concrete using Galvanostatic pulse transient technique. Int. of Concrete. Str. and Mat. 1 [1], 83-88. https://doi.org/10.4334/IJCSM.2007.1.1.083
Gonzalez, J.A.; Albeniz, J.; Feliu, S. (1996) Polarization resistance constant B values for 20 different metalenvironment systems. Rev. Metal. 32 [1], 10-7.
Andrade, C.; Alonso, C. (2004) Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mat. Struct. 37 [9], 623-643. https://doi.org/10.1007/BF02483292
Feliu, S.; Gonzalez, J.A.; Feliu, V.; Escudero, L.; Rodriguez, I.A.; Ausin, V.; et al. inventors; CSIC Consejo Superior Investigaciones Científicas; Geotec Cimientos; Geotecnia y Cimientos Geocisa Sa; Consejo Superior Investigacion, assignee. Electrochemical measuring-corrosion rate of reinforcement in concrete-using DC to obtain corrosion rate taking into account reinforcement area affected by electrical signal patent CA2042883-A; ES2024268-A; US5259944-A.
Krebs, N.; Fabrin, K.; Frolund, T.; Kofoed, B.; Langkjaer, C.; Klinghoffer, O. inventors; Force Inst, assignee. Determining rate of corrosion in reinforced concrete-uses galvanostatic pulse method in connection with reference electrode and current density controlled counterelectrode patent WO9709603-A1; DK9500981-A; AU9667860-A; DK171925-B.
Elsener, B. (2005) Corrosion rate of steel in concrete- Measurements beyond the Tafel law. Corr. Sci. 47 [12], 3019-3033. https://doi.org/10.1016/j.corsci.2005.06.021
Frølund, T.; Jensen, M.F.; Bassler, R. (2002) Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In First International Conference on Bridge Maintenance, Safety and Management IABMAS. Barcelona (Spain), 14-17 July.
Vedalakshmi, R.; Balamurugan, L.; Saraswathy, V.; Kim, S.H.; Ann, K.Y. (2010) Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies. KSCE J. Civil Engineer. 14 [6], 867-877. https://doi.org/10.1007/s12205-010-1023-6
Xu, J.; Yao, W. (2010) Detecting the efficiency of cathodic protection in reinforced concrete by use of galvanostatic pulse technique. Adv. Mat. Res. 177, 584-589. https://doi.org/10.4028/www.scientific.net/AMR.177.584
Dou, Y.T.; Hao, B.H.; Meng, B.; Xie, J.; Dong, M.L.; Zhang, A.L. (2014) The study to the corrosion of reinforcing steel in concrete by using galvanostatic pulse technique. Appl. Mech. Mater. 501, 916-919. https://doi.org/10.4028/www.scientific.net/AMM.501-504.916
Martínez, I.; Andrade, C.; Rebolledo, N.; Bouteiller, V.; Marie-Victoire, E.; Olivier, G. (2008) Corrosion characterization of reinforced concrete slabs with different devices. Corrosion. 64 [2], 107-123. https://doi.org/10.5006/1.3280679
Poursaee, A.; Hansson, C.M. (2008) Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis. Corros. Sci. 50 [10], 2739-2746. https://doi.org/10.1016/j.corsci.2008.07.017
Martínez, I.; Andrade, C.; Rebolledo, N.; Luo, L.; De Schutter, G. (2010) Corrosion-inhibitor efficiency control: comparison by means of different portable corrosion rate meters. Corrosion. 66 [2], 026001-026001-12. https://doi.org/10.5006/1.3319663
Feliu, S.; González, J.A.; Feliu, S.Jr.; Andrade, C. (1990) Confinement of the electrical signal for in situ measurement of polarization resistance in reinforced concrete. ACI Mater. J. 87 [5], 457-60. https://doi.org/10.14359/1830
Martínez, I.; Andrade, C.; Fullea, J.; Bolano, J.A.; Jimenez, F.; Navarro, A. inventors; Consejo Superior de Investigaciones Cientificas (CNSJ-C) Geotecnia & Cimientos GEOCISA SA (GEOT-Non-standard) assignee. Method and device used to detect corrosion in cathodically-protected buried steel patent WO200203330-A1; ES2180440-A1; ES2180440-B1; AU2002314213-A1.
Martínez, I.; Andrade, C.; Fullea, J.; Castellote, M. inventors; Consejo Superior de Investigaciones Cientificas (CONSNon-standard), assignee. Method for measuring speed of corrosion in metal by induced polarization, involves maintaining two electrodes in contact with metal in order to carry out measurement, where electrodes are located in two intermediate points patent ES2237241-A1; ES2237241-B1.
Ramón, J.E.; Martínez, I.; Gandía-Romero, J.M.; Soto, J. (2021) An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: cell constants determination. Sensors. 21 [7], 2481. https://doi.org/10.3390/s21072481 PMid:33918485 PMCid:PMC8038218
Martínez, I.; Andrade, C.; Castillo, A. (2012) Corrosion evaluation in nuclear contention structures using electrochemical nondestructive techniques. Inf. Construcc. 64 [528], 519-528. https://doi.org/10.3989/ic.11.103
Castillo, A.; Andrade, C.; Martínez, I.; Rebolledo, N.; FernándezTroyano, L.; Ayuso, G.; Cuervo, J.; Junquera, J.; Santana, C.; Delgado, J. (2011) Assessment and monitoring of durability of shell structures in "Zarzuela Racecourse" Madrid. Inf. Construcc. 63 [524], 33-41. https://doi.org/10.3989/ic10.058
Martínez, I.; Andrade, C. (2009) Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31 [8], 545-554. https://doi.org/10.1016/j.cemconcomp.2009.05.007
Andrade, C.; Martínez, I.; Castellote, M. (2008) Feasibility of determining corrosion rates by means of stray currentinduced polarization. J. Appl. Electrochem. 38 [10], 1467-1476. https://doi.org/10.1007/s10800-008-9591-6
Andrade, C.; Martínez, I. (2005) Calibration by gravimetric losses of electrochemical corrosion rate measurement using modulated confinement of the current. Mat. Struct. 38 [9], 833-841. https://doi.org/10.1007/BF02481656
EN 206:2013+A2:2021. Concrete-Part 1: Specification, performance, production and conformity. British Standards Institution, 2021.
Newman, J. (1966) Resistance for flow of current to a disk. J. Electrochem. Soc. 113 [5], 501-502. https://doi.org/10.1149/1.2424003
Feliu, S.; Andrade, C.; González, J.A.; Alonso, C. (1996) A new method for in-situ measurement of electrical resistivity of reinforced concrete. Mat. Struct. 29 [6], 362-365. https://doi.org/10.1007/BF02486344
UNE 112010:2011 Spanish Standard, Corrosion of concrete reinforcement steel. Chloride determination for in-service concrete, 2011.
Feliu, V.; González, J.A.; Andrade, C.; Feliu, S. (1998) Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions. Corros. Sci. 40 [6], 975-993. https://doi.org/10.1016/S0010-938X(98)00036-5
UNE 112072:2011 Spanish Standard, Laboratory measurement of corrosion rate using the polarization resistance technique, 2011.
Andrade, C.; Alonso, M.C.; González, J.A. (1990) An initial effort to use the corrosion rate measurements for estimating rebar durability. In: Berke, N.S.; Chaker, V.; Whiting, D. editors. Corrosion rates of steel in concrete ASTM STP1065. Philadelphia: Am. Soc. Tes. Mat. 143. https://doi.org/10.1520/STP25013S
ASTM C876 − 15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken, PA, 2015.
Polder, R.B. (2001) Test methods for on site measurement of resistivity of concrete-A RILEM TC-154 technical recommendation. Constr. Build. Mater. 15 [2-3], 125-131. https://doi.org/10.1016/S0950-0618(00)00061-1
Andrade, C.; Martínez, I.; Alonso, C.; Fullea, J. (2001) New advanced electrochemical techniques/or on site measurements of reinforcement corrosion. Mat. Constr. 51 [263-264], 97-107. https://doi.org/10.3989/mc.2001.v51.i263-264.356
Martínez, I.; Castillo, A. (2020) Concrete surface applied corrosion inhibitors: on site evaluation by non-destructive electrochemical techniques. In REHABEND 2020 Congress Granada (Spain), 24-27 March, 2020.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.