Characterisation and diagnosis of heritage concrete: case studies at the Eduardo Torroja Institute, Madrid, Spain

Authors

DOI:

https://doi.org/10.3989/mc.2021.11021

Keywords:

Concrete heritage, Weathering, Physical properties, Behaviour of large ages, Modern movement

Abstract


That the preservation of twentieth concrete heritage is an area scantly explored can be attributed to a lack of appreciation for such a young material. In most cases conservation is broached from a technical perspective with little regard for heritage value. Ongoing assessment of the condition of structures is the primary strategy to minimise such misguided action. This study involved characterising the condition of the concrete in a number of singular elements forming part of the Eduardo Torroja Institute for Construction Science headquarters at Madrid, Spain, a modernist compound listed by the city of Madrid as a protected asset. The in situ findings using non-destructive and laboratory techniques revealed the core concrete to be in good condition. The surface material, however, exhibits signs of durability issues calling for conservation treatments and techniques compatible with the preservation of the integrity and authenticity of this young heritage material.

Downloads

Download data is not yet available.

References

Heinemann, H.A.; van Hees, R.P.J.; Nijland, T.G. (2008) Concrete: Too young for conservation? In: D'Ayala & Fodde (Eds), Structural Analysis of Historic Construction (pp. 10). London: Taylor & Francis Group.

Ramírez Guerrero, G.; Arcila Garrido, M.; Chica Ruiz, A.; Benítez López, D. (2019). Concrete as heritage: Social perception and its valuing - the Zarzuela hippodrome case. WIT Trans. Built. Environ. 191, 17-27. https://doi.org/10.2495/STR190021

Macdonald, S.; Arato Gonçalves, A.P. (2020). Conservation principles for concrete of cultural significance. Los Angeles: Getty Conservation Institute.

Damas Mollá, L.; Sagarna Aranburu, M.; Uriarte, J.A.; Aranburu, A.; Zabaleta, A.; García-García, F.; Antigüedad, I.; Morales, T. (2020) Understanding the pioneering techniques in reinforced concrete: the case of Punta Begoña Galleries, Getxo, Spain. Build. Res. Inf. 48, 785-801 https://doi.org/10.1080/09613218.2019.1702498

Merzoug, W.; Chergui, S.; Zouaoui, M.C. (2020) The impact of reinforced concrete on the modern-day architectural heritage of Algeria. J. Build. Eng. 30, 101210 https://doi.org/10.1016/j.jobe.2020.101210

Jackson, M.D.; Landis, E.N.; Brune, P.F.; Vitti, M.; Chen, H.; Li, Q.; Kunz, M., Wenk, H-R.; Monteiro, P.J.M.; Ingraffea, A.R. (2014) Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. PNAS. 111 [5], 18484-18489. https://doi.org/10.1073/pnas.1417456111 PMid:25512521 PMCid:PMC4284584

Gross, G. (2018) Concrete heritage conservation and the viability of migrating corrosion inhibitors, Master's Thesis, Columbia University.

Frampton, K. (2007) Modern architecture: A critical history, London: Thames & Hudson Ltd, 4th edition.

Barberena Fernández, A.M. (2016) Conservación de esculturas de hormigón: efecto de consolidantes en pastas y morteros de cemento, Doctoral Thesis, Universidad Complutense de Madrid.

Peralbo Cano, R.; Durán Suárez, J.A. (2005) La escultura y la dimensión del hormigón: morteros y hormigones con aplicaciones técnico-escultóricas. Granada: Facultad de Bellas Artes (Departamento de Escultura), Universidad de Granada.

Bergeron, L. (2003) L'impact de la modernisation économique et le patrimoine industriel. Word Heritage papers 5, UNESCO.

de Almeida Valença, J.M.; Fernandes Pereira de Almeida, C.A.; Miranda Botas, J.L.; Brito Santos Júlio, E.N. (2015) Patch Restoration Method: A new concept for concrete heritage. Construc. Build. Mat. 101, 643-651. https://doi.org/10.1016/j.conbuildmat.2015.10.055

Heinemann, H. A. (2013) Historic Concrete. From concrete repair to concrete conservation. Doctoral Thesis, Delft University.

Berkowski, P.; Dmochowski, G.; Barański, J.; Szołomicki, J. (2018) The construction history and assessment of two heritage industrial buildings in Wrocław. MATEC Web of Conferences, 174, 03008. https://doi.org/10.1051/matecconf/201817403008

Valença, J.; Júlio, E. (2010) Conservation requirements for concrete heritage. The case study of the buildings of the Fundação Calouste Gulbenkian in Lisbon. In: P. J. S. Cruz (Ed.), ICSA 2010, Structures and Architecture, Proceedings of the first international conference on structures and architecture (pp.439-440). Guimares: CRC Press. https://doi.org/10.1201/b10428-214

ACI PRC-201.2-16 (2016) Guide for Durable Concrete. Detroit, American Concrete Institute.

Courard, L.; Guillard, A.; Darimont, A.; Bleus, J.M.; Paquet, P. (2012) Pathologies of concrete in Saint-Vincent Neo-Byzantine Church and Pauchot reinforced artificial Stone. Construc. Build. Mat. 34, 201-210. https://doi.org/10.1016/j.conbuildmat.2012.02.070

Gaudette, P.; Slaton, D. (2007) Preservation Brief 15 : Preservation of historic concrete. Washington D.C.: National Park Service, Heritage Preservation Services.

De Weerdt, K.; Plusquellec, G.; Belda Revert, A.; Geiker, M.R.; Lothenbach, B. (2019). Effect of carbonation on the pore solution of mortar. Cem. Concr. Res. 118, 38-56. https://doi.org/10.1016/j.cemconres.2019.02.004

Garcia-Lodeiro, I.; Goracci, G.; Dolado, J.S.; Blanco-Varela, M.T. (2021). Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process. Cem. Concr. Res. 140, 106312. https://doi.org/10.1016/j.cemconres.2020.106312

Galán, I.; Andrade, C.; Castellote, M. (2012) Thermogravimetrical analysis for monitoring carbonation of cementitious materials. Uptake of CO2 and deepening in C-S-H knowledge. J. Therm. Anal. Calorim. 110 [1], 309-319. https://doi.org/10.1007/s10973-012-2466-4

Di Mundo, R.; Labianca, C.; Carbone, G.; Notarnicola, M. (2020). Recent advances in hydrophobic and icephobic surface treatments of concrete. Coatings. 10 [5], 449. https://doi.org/10.3390/coatings10050449

BS EN 1504-9:2011. Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity - Part 9: General principles for the use of products and systems. London: BSI.

Pizzigatti, C.; Franzoni, E. (2021) The problem of conservation of XX century architectural heritage: The fibreglass dome of the woodpecker dance club in Milano Marittima (Italy). J. Build. Eng. 42, 102476 https://doi.org/10.1016/j.jobe.2021.102476

Arato Gonçalves, A.P.; Macdonald, S.; Marie-Victoire, E.; Bouichou, M.; Wood, C. (2019). Performance of patch repairs on historic concrete structures: a preliminary assessment. MATEC Web of Conferences, 289, 0700. https://doi.org/10.1051/matecconf/201928907001

Borg, R.P. (2020) Concrete heritage: challenges in conservation. Symposia Melitensia, 16, 35-52.

Kapetanaki, K.; Vazgiouraki, E.; Stefanakis, D.; Fotiou, A.; Anyfantis, G.C.; García-Lodeiro, I.; Blanco-Varela, M.T.; Arabatzis, I.; Maravelaki, P.N. (2020) TEOS modified with nano-calcium oxalate and PDMS to protect concrete based cultural heritage buildings. Front. Mater. 7, 1-13. https://doi.org/10.3389/fmats.2020.00016

Courard, L.; Zhao, Z.; Michel, F. (2021) Influence of hydrophobic product nature and concentration on carbonation resistance of cultural heritage concrete buildings. Cem. Concr. Comp. 115, 103860. https://doi.org/10.1016/j.cemconcomp.2020.103860

InnovaConcrete project (2018-2021) Retrieved from https://www.innovaconcrete.eu.

DOCOMOMO Iberico, ICOMOS (2019) 100 from the 20th, the InnovaConcrete selection of the significant 20th Century heritage sites in Europe. Retrieved from https://www.innovaconcrete.eu/100-from-the-20th-is-online-now/.

Queipo-de-Llano, J.; Pachón-Montaño, A.; García-Lodeiro, I.; Carmona-Quiroga, P.M.; Blanco-Varela, M.T.; Frías-López, E. (2018) Singular elements in the architecture of the IETCC: design, execution and current status. In: Cassinello (Ed.), International Conference on Construction Research - EDUARDO TORROJA. Architecture, Engineering, Concrete. Madrid.

DOCOMOMO Ibérico. Documentation and conservation of the architecture and urbanism of the modern movement. Retrieved from http://www.docomomoiberico.com.

Equipo Editorial. (1984) Conmemoración del cincuenta aniversario del Instituto de la Construcción y del Cemento «Eduardo Torroja». Inform. Construc. 36 [365], 5-22. https://doi.org/10.3989/ic.1984.v36.i365.1893

Azorín, V.; Cassinello, P.; Monjo, J. (2012) Archivo Eduardo Torroja. La Sede del itcc (1949-1953). Inéditos anteproyectos previos a su construcción. Infor. Constr. 64 [525], 5-18. https://doi.org/10.3989/ic.11.023

Equipo Editorial. (1958) Costillares. Instituto Técnico de la Construcción y del Cemento. Infor. Constr. 10 [099], 7-26. https://doi.org/10.3989/ic.1958.v10.i099.5575

Echegaray, G.; Barbero, M. (1999) Composición arquitectónica. Infor. Constr. 51 [462], 19-42. https://doi.org/10.3989/ic.1999.v51.i462.857

Cassinello, F.; Torroja, J.A.; Morán, F.; Fernández, F. (1969) Morfogénesis de una lámina, España. Infor. Constr. 22 [214], 3-28. https://doi.org/10.3989/ic.1969.v22.i214.3659

Nadal, J. (1999) El Instituto Técnico de la Construcción y del Cemento. Infor. Constr. 51 [462], 9-18.

Eymar, J.M. (1999) Prefabricación. Infor. Constr. 51[462], 43-62. https://doi.org/10.3989/ic.1999.v51.i462.858

Archivo Histórico del Instituto Eduardo Torroja-CSIC. Retrieved from https://www.ietcc.csic.es/wp-content/uploads/2017/02/Archivo_Historico.pdf.

AEMET, Agencia Estatal de Meteorología, Spain. Retrieved from http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=3195&k=28.

Ayuntamiento de Madrid, Subdirección General de Energía y Cambio Climático (2016) Inventario de emisiones de gases de efecto invernadero del municipio de Madrid. Retrieved from http://www.mambiente.madrid.es/opencms/export/sites/default/calaire/Anexos/InventarioGEI2016.pdf.

Ayuntamiento de Madrid, Dirección General de Sostenibilidad y Control Ambiental (2019) Retrieved from https://transparencia.madrid.es/UnidadesDescentralizadas/Sostenibilidad/CalidadAire/Publicaciones/Memorias_anuales/Ficheros/Memoria_2019.pdf.

BS EN 12620:2003+A1:2009. Aggregates for concrete. London: BSI.

BS EN 14630:2007. Products and systems for the protection and repair of concrete structures - Test methods - Determination of carbonation depth in hardened concrete by the phenolphthalein method. London: BSI.

ASTM C1084-19 (2019) Standard Test Method for Portland-Cement Content of Hardened Hydraulic-Cement Concrete. West Conshohocken: ASTM International.

UNE 83980:2014. Durabilidad del hormigón. Métodos de ensayo. Determinación de la absorción de agua, la densidad y la porosidad accesible al agua del hormigón. Madrid: AENOR.

BS EN 12390-3:2020. Testing hardened concrete - Part 3: Compressive strength of test specimens. London: BSI.

UNE 83988-1:2008. Determinación de la resistividad eléctrica. Parte 1: Método directo (método de referencia). Madrid: AENOR.

Echevarría, L.; Garnica, C.; Gutiérrez, J. (2014) La costilla laminar del Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC). Levantamiento mediante láser-escáner y evaluación estructural. Infor. Constr. 66 [536], e038. https://doi.org/10.3989/ic.14.116

BS EN 12504-2:2013. Testing concrete in structures - Part 2: Non-destructive testing - Determination of rebound number. London: BSI.

ASTM C876-15 (2015) Standard test method for corrosion potentials of uncoated reinforcing steel in Concrete. West Conshohocken: ASTM International.

Polder, R.; Andrade, C.; Elsener, B.; Vennesland, Ø.; Gulikers, J.; Weidert, R.; Raupach, M. (2000) Test methods for on site measurement of resistivity of concrete. Mater. Struct. 33, 603-611. https://doi.org/10.1007/BF02480599

Andrade, C.; Martinez, I. (2005) Calibration by gravimetric losses of electrochemical corrosion rate measurement using modulated confinement of the current. Mater. Struct. 38, 833-841. https://doi.org/10.1617/14297

Polder, R.B. (2001) Test methods for on site measurement of resistivity of concrete - a RILEM TC-154 technical recommendation. Construc. Build. Mat. 15, 125-131. https://doi.org/10.1016/S0950-0618(00)00061-1

BS EN 1992-1-1:2013/A1:2015. Eurocode 2 Design of concrete structures. Part 1-1 General rules and rules for buildings. London: BSI.

Centro Experimental de Arquitectura (1948) Pliego general de condiciones varias de la edificación. Título 1, Condiciones generales de índole técnica; aprobado por el Consejo Superior de los Colegios de Arquitectos; adoptado en las Obras de la Dirección General de Arquitectura. Madrid.

Peña Boeuf, A. (1944) ORDEN de 20 de marzo de1944 por la que se aprueba la Instrucción definitiva para el proyecto de ejecución de obras de hormigón. Boletín Oficial del Estado, nº. 153, 4299-4318.

Martínez-Ramírez, S.; Zamarad, A.; Thompson, G.E.; Moore, B. (2002) Organic and inorganic concrete under SO2 pollutant exposure. Build. Environ. 37, 933-937. https://doi.org/10.1016/S0360-1323(01)00065-8

Bautista, A.; Velasco, F.; Torres-Carrasco, M. (2019) Influence of the alkaline reserve of chloride-contaminated mortars on the 6-year corrosion behavior of corrugated UNS S32304 and S32001 stainless steels. Metals. 9, 686. https://doi.org/10.3390/met9060686

Gadsden, J. A. (1975) Infrared spectra of minerals and related inorganic compounds. London: Butterworth Groups.

Ministerio de Fomento (2019) Documento Básico de Seguridad Estructural, DB-SE. Real Decreto 732/2019, de 20 de diciembre, por el que se modifica el Código Técnico de la Edificación. Boletín Oficial del Estado, 311, 140488-140674.

Sanchez, K.; Tarranza, N. (2014) Reliability of rebound hammer test in concrete compressive strength estimation. Int. J. Adv. Agric. Environ. Eng. 1, 198-202. Retrieved from https://iicbe.org/upload/2458C1114040.pdf.

Malhotra V.M.; Carino, N.J. (2004) Handbook on nondestructive testing of concrete. Boca Raton: CRC Press. https://doi.org/10.1201/9781420040050

Presidencia del Gobierno (2008) Real Decreto 1247/2008, de 18 de julio, por el que se aprueba la instrucción de hormigón estructural (EHE-08). Boletín Oficial del Estado, nº 203, 35176-35178 y Suplemento.

Kéri, A.; Sápi, A.; Ungor, D.; Sebok, D.; Csapó, E.; Kónya, Z.; Galbács, G. (2020) Porosity determination of nano- and sub-micron particles by single particle inductively coupled plasma mass spectrometry. J. Anal. Atomic Spectrom. 35 1139-1147. https://doi.org/10.1039/D0JA00020E

Published

2021-11-11

How to Cite

Carmona-Quiroga, P. ., Pachón-Montaño, A. ., Queipo-de-Llano, J. ., Martín-Caro, J. ., López, D. ., Paniagua, I. ., Martínez, I. ., Rubiano, F. ., García-Lodeiro, I. ., Fernández-Ordóñez, L. ., Blanco-Varela, M. ., & Frías-López, E. . (2021). Characterisation and diagnosis of heritage concrete: case studies at the Eduardo Torroja Institute, Madrid, Spain. Materiales De Construcción, 71(344), e262. https://doi.org/10.3989/mc.2021.11021

Issue

Section

Research Articles

Funding data

H2020 European Research Council
Grant numbers 760858

Comunidad de Madrid
Grant numbers S2018/NMT_4372

Most read articles by the same author(s)