Experiencia en la monitorización de la corrosión in situ en estructuras de hormigón: posibles mejoras en el método de resistencia a la polarización controlada por corriente

Autores/as

DOI:

https://doi.org/10.3989/mc.2021.11221

Palabras clave:

Hormigón, Armadura de acero, Corrosión, Durabilidad

Resumen


La necesidad de realizar un mantenimiento proactivo de las estructuras de hormigón armado mediante técnicas no destructivas (NDT) es ya un hecho. Una estrategia de interés es la medida de velocidad de corrosión de las armaduras in-situ. El objetivo de este trabajo es realizar un estudio sobre la fiabilidad del método de confinamiento modulado de la corriente (MCC). Para ello se realiza una revisión de las medidas realizadas in situ con dicho método en diferentes estructuras reales a lo largo de 13 años. Las principales problemáticas detectadas son un deficiente confinamiento de la corriente de polarización en situaciones de baja resistividad y una polarización excesiva de las armaduras en estado pasivo. Para incrementar la fiabilidad del método MCC, se identifica la necesidad de mejorar la metodología actual de regulación y control de corrientes. Partiendo de los inputs de este trabajo, estamos ya trabajando en mejoras de los próximos corrosímetros.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, CEN, 2015.

Martínez, I.; Andrade, C. (2011) Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison. Mater. Corros. 62 [10], 932-942. https://doi.org/10.1002/maco.200905596

Scully, J.R. (2000) Polarization resistance method for determination of instantaneous corrosion rates. Corros. 56 [2], 199-218. https://doi.org/10.5006/1.3280536

So, H.S.; Millard, S.G. (2007) Assessment of corrosion rate of reinforcing steel in concrete using Galvanostatic pulse transient technique. Int. of Concrete. Str. and Mat. 1 [1], 83-88. https://doi.org/10.4334/IJCSM.2007.1.1.083

Gonzalez, J.A.; Albeniz, J.; Feliu, S. (1996) Polarization resistance constant B values for 20 different metalenvironment systems. Rev. Metal. 32 [1], 10-7.

Andrade, C.; Alonso, C. (2004) Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mat. Struct. 37 [9], 623-643. https://doi.org/10.1007/BF02483292

Feliu, S.; Gonzalez, J.A.; Feliu, V.; Escudero, L.; Rodriguez, I.A.; Ausin, V.; et al. inventors; CSIC Consejo Superior Investigaciones Científicas; Geotec Cimientos; Geotecnia y Cimientos Geocisa Sa; Consejo Superior Investigacion, assignee. Electrochemical measuring-corrosion rate of reinforcement in concrete-using DC to obtain corrosion rate taking into account reinforcement area affected by electrical signal patent CA2042883-A; ES2024268-A; US5259944-A.

Krebs, N.; Fabrin, K.; Frolund, T.; Kofoed, B.; Langkjaer, C.; Klinghoffer, O. inventors; Force Inst, assignee. Determining rate of corrosion in reinforced concrete-uses galvanostatic pulse method in connection with reference electrode and current density controlled counterelectrode patent WO9709603-A1; DK9500981-A; AU9667860-A; DK171925-B.

Elsener, B. (2005) Corrosion rate of steel in concrete- Measurements beyond the Tafel law. Corr. Sci. 47 [12], 3019-3033. https://doi.org/10.1016/j.corsci.2005.06.021

Frølund, T.; Jensen, M.F.; Bassler, R. (2002) Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In First International Conference on Bridge Maintenance, Safety and Management IABMAS. Barcelona (Spain), 14-17 July.

Vedalakshmi, R.; Balamurugan, L.; Saraswathy, V.; Kim, S.H.; Ann, K.Y. (2010) Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies. KSCE J. Civil Engineer. 14 [6], 867-877. https://doi.org/10.1007/s12205-010-1023-6

Xu, J.; Yao, W. (2010) Detecting the efficiency of cathodic protection in reinforced concrete by use of galvanostatic pulse technique. Adv. Mat. Res. 177, 584-589. https://doi.org/10.4028/www.scientific.net/AMR.177.584

Dou, Y.T.; Hao, B.H.; Meng, B.; Xie, J.; Dong, M.L.; Zhang, A.L. (2014) The study to the corrosion of reinforcing steel in concrete by using galvanostatic pulse technique. Appl. Mech. Mater. 501, 916-919. https://doi.org/10.4028/www.scientific.net/AMM.501-504.916

Martínez, I.; Andrade, C.; Rebolledo, N.; Bouteiller, V.; Marie-Victoire, E.; Olivier, G. (2008) Corrosion characterization of reinforced concrete slabs with different devices. Corrosion. 64 [2], 107-123. https://doi.org/10.5006/1.3280679

Poursaee, A.; Hansson, C.M. (2008) Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis. Corros. Sci. 50 [10], 2739-2746. https://doi.org/10.1016/j.corsci.2008.07.017

Martínez, I.; Andrade, C.; Rebolledo, N.; Luo, L.; De Schutter, G. (2010) Corrosion-inhibitor efficiency control: comparison by means of different portable corrosion rate meters. Corrosion. 66 [2], 026001-026001-12. https://doi.org/10.5006/1.3319663

Feliu, S.; González, J.A.; Feliu, S.Jr.; Andrade, C. (1990) Confinement of the electrical signal for in situ measurement of polarization resistance in reinforced concrete. ACI Mater. J. 87 [5], 457-60. https://doi.org/10.14359/1830

Martínez, I.; Andrade, C.; Fullea, J.; Bolano, J.A.; Jimenez, F.; Navarro, A. inventors; Consejo Superior de Investigaciones Cientificas (CNSJ-C) Geotecnia & Cimientos GEOCISA SA (GEOT-Non-standard) assignee. Method and device used to detect corrosion in cathodically-protected buried steel patent WO200203330-A1; ES2180440-A1; ES2180440-B1; AU2002314213-A1.

Martínez, I.; Andrade, C.; Fullea, J.; Castellote, M. inventors; Consejo Superior de Investigaciones Cientificas (CONSNon-standard), assignee. Method for measuring speed of corrosion in metal by induced polarization, involves maintaining two electrodes in contact with metal in order to carry out measurement, where electrodes are located in two intermediate points patent ES2237241-A1; ES2237241-B1.

Ramón, J.E.; Martínez, I.; Gandía-Romero, J.M.; Soto, J. (2021) An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: cell constants determination. Sensors. 21 [7], 2481. https://doi.org/10.3390/s21072481 PMid:33918485 PMCid:PMC8038218

Martínez, I.; Andrade, C.; Castillo, A. (2012) Corrosion evaluation in nuclear contention structures using electrochemical nondestructive techniques. Inf. Construcc. 64 [528], 519-528. https://doi.org/10.3989/ic.11.103

Castillo, A.; Andrade, C.; Martínez, I.; Rebolledo, N.; FernándezTroyano, L.; Ayuso, G.; Cuervo, J.; Junquera, J.; Santana, C.; Delgado, J. (2011) Assessment and monitoring of durability of shell structures in "Zarzuela Racecourse" Madrid. Inf. Construcc. 63 [524], 33-41. https://doi.org/10.3989/ic10.058

Martínez, I.; Andrade, C. (2009) Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31 [8], 545-554. https://doi.org/10.1016/j.cemconcomp.2009.05.007

Andrade, C.; Martínez, I.; Castellote, M. (2008) Feasibility of determining corrosion rates by means of stray currentinduced polarization. J. Appl. Electrochem. 38 [10], 1467-1476. https://doi.org/10.1007/s10800-008-9591-6

Andrade, C.; Martínez, I. (2005) Calibration by gravimetric losses of electrochemical corrosion rate measurement using modulated confinement of the current. Mat. Struct. 38 [9], 833-841. https://doi.org/10.1007/BF02481656

EN 206:2013+A2:2021. Concrete-Part 1: Specification, performance, production and conformity. British Standards Institution, 2021.

Newman, J. (1966) Resistance for flow of current to a disk. J. Electrochem. Soc. 113 [5], 501-502. https://doi.org/10.1149/1.2424003

Feliu, S.; Andrade, C.; González, J.A.; Alonso, C. (1996) A new method for in-situ measurement of electrical resistivity of reinforced concrete. Mat. Struct. 29 [6], 362-365. https://doi.org/10.1007/BF02486344

UNE 112010:2011 Spanish Standard, Corrosion of concrete reinforcement steel. Chloride determination for in-service concrete, 2011.

Feliu, V.; González, J.A.; Andrade, C.; Feliu, S. (1998) Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions. Corros. Sci. 40 [6], 975-993. https://doi.org/10.1016/S0010-938X(98)00036-5

UNE 112072:2011 Spanish Standard, Laboratory measurement of corrosion rate using the polarization resistance technique, 2011.

Andrade, C.; Alonso, M.C.; González, J.A. (1990) An initial effort to use the corrosion rate measurements for estimating rebar durability. In: Berke, N.S.; Chaker, V.; Whiting, D. editors. Corrosion rates of steel in concrete ASTM STP1065. Philadelphia: Am. Soc. Tes. Mat. 143. https://doi.org/10.1520/STP25013S

ASTM C876 − 15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken, PA, 2015.

Polder, R.B. (2001) Test methods for on site measurement of resistivity of concrete-A RILEM TC-154 technical recommendation. Constr. Build. Mater. 15 [2-3], 125-131. https://doi.org/10.1016/S0950-0618(00)00061-1

Andrade, C.; Martínez, I.; Alonso, C.; Fullea, J. (2001) New advanced electrochemical techniques/or on site measurements of reinforcement corrosion. Mat. Constr. 51 [263-264], 97-107. https://doi.org/10.3989/mc.2001.v51.i263-264.356

Martínez, I.; Castillo, A. (2020) Concrete surface applied corrosion inhibitors: on site evaluation by non-destructive electrochemical techniques. In REHABEND 2020 Congress Granada (Spain), 24-27 March, 2020.

Publicado

2021-10-15

Cómo citar

Ramón, J. E. ., Castillo, Á. ., & Martínez, I. . (2021). Experiencia en la monitorización de la corrosión in situ en estructuras de hormigón: posibles mejoras en el método de resistencia a la polarización controlada por corriente. Materiales De Construcción, 71(344), e265. https://doi.org/10.3989/mc.2021.11221

Número

Sección

Artículos