Preparation of shrinkage-free alkali-activated slag material using MgO as both the activator and the expansive agent

Authors

DOI:

https://doi.org/10.3989/mc.2023.297022

Keywords:

Alkali-activated slag, MgO, Autogenous shrinkage, Drying shrinkage

Abstract


Alkali-activated slag (AAS) materials activated by NaOH or waterglass has been long-term criticized for the developed substantial shrinkage. To this regard, this paper explored MgO as both an activator and an expansive agent to prepare shrinkage-free AAS. The setting time, mechanical strength, pore structure, autogenous shrinkage, drying shrinkage, and hydration products of MgO-activated AAS were studied. Experimental results confirmed that MgO can effectively mitigate the autogenous shrinkage and drying shrinkage of AAS via the expansive deformation caused by Mg(OH)2. Generally, AAS with a higher dosage of MgO developed less shrinkages and refiner pore structures with more gel pores. An optimal dosage of 9% MgO is recommended to prepare AAS with near zero shrinkage and the highest flexural strength.

Downloads

Download data is not yet available.

References

Fang, Y.; Wang, J.; Qian, X.; Wang, L.; Chen, P.; Qiao, P. (2022) A renewable admixture to enhance the performance of cement mortars through a pre-hydration method. J. Clean. Prod. 332, 130095. https://doi.org/10.1016/j.jclepro.2021.130095

Xu, D.; Cui, Y.; Li, H.; Yang, K.; Xu, W.; Chen, Y. (2015) On the future of Chinese cement industry. Cem. Concr. Res. 78, 2-13. https://doi.org/10.1016/j.cemconres.2015.06.012

Zhang, C.Y.; Han, R.; Yu, B.; Wei, Y.M. (2018) Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways. J. Clean. Prod. 184, 451-465. https://doi.org/10.1016/j.jclepro.2018.02.284

Chen, P.; Wang, J.; Wang, L.; Xu, Y. (2019) Perforated cenospheres: A reactive internal curing agent for alkali activated slag mortars. Cem. Concr. Compos. 104, 103351. https://doi.org/10.1016/j.cemconcomp.2019.103351

Roy, D.M. (1999) Alkali-activated cements opportunities and challenges. Cem. Concr. Res. 29 [2], 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3

Ye, H.; Radlińska, A. (2017) Shrinkage mitigation strategies in alkali-activated slag. Cem. Concr. Res. 101, 131-143. https://doi.org/10.1016/j.cemconres.2017.08.025

Shi, C.; Roy, D.; Krivenko, P. (2003) Alkali-activated cements and concretes. CRC press. https://doi.org/10.1201/9781482266900

Karozou, A.; Konopisi, S.; Paulidou, E.; Stefanidou, M. (2019) Alkali activated clay mortars with different activators. Constr. Build. Mater. 212, 85-91. https://doi.org/10.1016/j.conbuildmat.2019.03.244

Gonçalves, M.; Vilarinho, I.S.; Capela, M.; Caetano, A.; Novais, R.M.; Labrincha, J.A.; Seabra, M.P. (2021) Waste-based one-part alkali activated materials. Mater. 14 [11], 2911. https://doi.org/10.3390/ma14112911 PMid:34071507 PMCid:PMC8198906

Rodríguez, E.; Bernal, S.; De Gutiérrez, R.M.; Puertas, F. (2008) Alternative concrete based on alkali-activated slag.Mater. Construcc. 58 [291], 53-67. https://doi.org/10.3989/mc.2008.v58.i291.104

Alcaide, J.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Construcc. 57 [288], 33-48.

Palomo, A.; Grutzeck, M.; Blanco, M. (1999) Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 29 [8], 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9

Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T. (2006) Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Construcc.56 [283], 79-90. https://doi.org/10.3989/mc.2006.v56.i283.10

Kumarappa, D.B.; Peethamparan, S.; Ngami, M. (2018) Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem. Concr. Res. 109, 1-9. https://doi.org/10.1016/j.cemconres.2018.04.004

Sakulich, A.R.; Bentz, D.P. (2013) Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Mater. Struct. 46 [8], 1355-1367. https://doi.org/10.1617/s11527-012-9978-z

Ye, H.; Radlińska, A. (2016) Shrinkage mechanisms of alkali-activated slag. Cem. Concr. Res. 88, 126-135. https://doi.org/10.1016/j.cemconres.2016.07.001

Alonso, M.; Rodríguez, A.; Puertas, F. (2018) Viability of the use of construction and demolition waste aggregates in alkali-activated mortars. Mater. Construcc. 68 [331], e164-e164. https://doi.org/10.3989/mc.2018.07417

Gao, X.; Liu, C.; Shui, Z.; Yu, R. (2021) Effects of expansive additives on the shrinkage behavior of coal gangue based alkali activated materials. Crystals. 11 [7], 816. https://doi.org/10.3390/cryst11070816

Hanjitsuwan, S.; Injorhor, B.; Phoo-ngernkham, T.; Damrongwiriyanupap, N.; Li, L-Y.; Sukontasukkul, P.; Chindaprasirt, P. (2020) Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive. Cem. Concr. Compos. 114, 103760. https://doi.org/10.1016/j.cemconcomp.2020.103760

Shuang, L.; Zhi-lu, Z.; De-sha, T.; Wen-cong, H.; Lin-wen, Y.; Kai, Y. (2018) Investigation of the effect of CaO expansive agent on the restricted expansion rate of alkali activated slag mortar. Bull. Chin. Ceram. Soc. 37 [5], 1747-1752. (in Chinese)

Habert, G.; De Lacaillerie, J.D.E.; Roussel, N. (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19 [11], 1229-1238. https://doi.org/10.1016/j.jclepro.2011.03.012

Rees, C.A.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. (2008) The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloid Surf. A-Physicochem. Eng. Asp. A. 318 [1-3], 97-105. https://doi.org/10.1016/j.colsurfa.2007.12.019

Criado, M.; Palomo, A.; Fernández-Jiménez, A.; Banfill, P. (2009) Alkali activated fly ash: effect of admixtures on paste rheology. Rheol. Acta. 48 [4], 447-455. https://doi.org/10.1007/s00397-008-0345-5

Jin, F.; Gu, K.; Al-Tabbaa, A. (2014) Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Constr. Build. Mater. 51, 395-404. https://doi.org/10.1016/j.conbuildmat.2013.10.081

Vo, D.H.; Hwang, C.L.; Yehualaw, M.D.; Liao, M.C. (2021) The influence of MgO addition on the performance of alkali-activated materials with slag− rice husk ash blending. J. Build. Eng. 33, 101605. https://doi.org/10.1016/j.jobe.2020.101605

Hwang, C.L.; Vo, D.H.; Tran, V.A.; Yehualaw, M.D. (2018) Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Constr. Build. Mater. 186, 503-513. https://doi.org/10.1016/j.conbuildmat.2018.07.129

Jin, F.; Gu, K.; Abdollahzadeh, A.; Al-Tabbaa, A. (2015) Effects of different reactive MgOs on the hydration of MgO-activated GGBS paste. J. Mater. Civil. Eng. 27 [7], B4014001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001009

Ye, Q.; Yu, K.; Zhang, Z. (2015) Expansion of ordinary Portland cement paste varied with nano-MgO. Constr. Build. Mater. 78, 189-193. https://doi.org/10.1016/j.conbuildmat.2014.12.113

He, J.; Zheng, W.; Bai, W.; Hu, T.; He, J.; Song, X. (2021) Effect of reactive MgO on hydration and properties of alkali-activated slag pastes with different activators. Constr. Build. Mater. 271, 121608. https://doi.org/10.1016/j.conbuildmat.2020.121608

Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. (2014) MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 57, 1-12. https://doi.org/10.1016/j.cemconres.2013.12.007

GB/T18046. (2017) Ground granulated blast furnace slag used for cement, mortar and concrete. Standardization Admination of the Peoples's Republic of China, China. (in Chinese).

DL/T 5296. (2013) Technical specification of magnesium oxide expansive for use in hydraulic concrete. National Energy Administration, China. (in Chinese).

ASTM C191. (2021) Standard test methods for time of setting of hydraulic cement by vicat needle. ASTM International, West Conshohocken, PA.

ASTM C1698. (2019) Standard test method for autogenous strain of cement paste and mortar. ASTM International, West Conshohocken, PA.

ASTM C596. (2018) Standard test method for drying shrinkage of mortar containing hydraulic cement. ASTM International,West Conshohocken, PA.

ASTM C349. (2018) Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). ASTM International, West Conshohocken, PA.

ASTM C348. (2021) Standard test method for flexural strength of hydraulic-cement mortars. ASTM International, West Conshohocken, PA.

Suescum-Morales, D.; Bravo, M.; Silva, R.V.; Jiménez, J.R.; Fernandez-Rodriguez, J.M.; Brito, J. de (2022) Effect of reactive magnesium oxide in alkali-activated fly ash mortars exposed to accelerated CO2 curing. Constr. Build. Mater. 342, 127999. https://doi.org/10.1016/j.conbuildmat.2022.127999

Zhang, J.; Lv, T.; Han, Q.; Zhu, Y.; Hou, D.; Dong, B. (2022) Effects of fly ash on MgO-based shrinkage-compensating cement: microstructure and properties. Constr. Build. Mater. 339, 127648. https://doi.org/10.1016/j.conbuildmat.2022.127648

Kuenzel, C.; Zhang, F.; Ferrandiz-Mas, V.; Cheeseman, C.; Gartner, E. (2018) The mechanism of hydration of MgO-hydromagnesite blends. Cem. Concr. Res. 103, 123-129. https://doi.org/10.1016/j.cemconres.2017.10.003

Rodríguez-Navarro, C.; Hansen, E.; Ginell, W.S. (1998) Calcium hydroxide crystal evolution upon aging of lime putty. J. Am. Ceram. Soc. 81 [11], 3032-3034. https://doi.org/10.1111/j.1151-2916.1998.tb02735.x

Published

2023-03-06

How to Cite

Chen, P. ., Chen, Q. ., Fang, Y. ., Wang, C. ., Wang, X. ., Li, J. ., & Wang, Y. . (2023). Preparation of shrinkage-free alkali-activated slag material using MgO as both the activator and the expansive agent. Materiales De Construcción, 73(349), e306. https://doi.org/10.3989/mc.2023.297022

Issue

Section

Research Articles

Funding data