Influence of whitening additives on the properties of decorative slag-alkali cements and mortars
DOI:
https://doi.org/10.3989/mc.2023.319622Keywords:
Alkali-activated slag cements, Colour stability, Pigments, Decorative cements, Freeze/thaw resistance, BehaviourAbstract
The paper shows a comparative study of the influence of whitening additives (kaolin, TiO2 and СаСО3) on the production of decorative alkali-activated slag cement and mortars with a degree of whiteness of at least 70%; as well as their influence on the structure formation and evolution of physico-mechanical properties. According to results obtained, kaolin provides chemical bonding of Na+ into insoluble zeolite-like compounds; and CaCO3 densifies the structure and reduces shrinkage deformations. At the early stages of hardening (up to 7 days), the additions of kaolin and calcite, due to their significant amount (15 and 24%), reduces the compressive strength of the cement paste; nevertheless, at later ages (until 90 days) the difference in strength almost disappears. The high colourfastness and weather resistance of pigmented cements under the influence of ultraviolet radiation and freeze/thaw cycles has been established. A comparative assessment of the economic efficiency has shown that СаСО3 is the best cost-effective additive.
Downloads
References
Gartner, E. (2004) Industrially interesting approaches to "low-CO2" cements. Cem. Concr. Res. 34 [9], 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38 [2], 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008
Provis, J.L.; van Deventer, J.S.J. (2014) Alkali activated materials. State-of-the-art report. RILEM TC 224-AAM. Springer. https://doi.org/10.1007/978-94-007-7672-2
Taylor, M.; Tarn, C; Gielen, D. (2006) Energy efficiency and CO2 emissions from the global cement industry. Energy Technology Policy Division. International Energy Agency. Retrieved from https://cyberleninka.org/article/n/259584.pdf (Accessed on: July 19, 2022).
White cement market forecast by type (White portland cement, white masonry cement, and others) and end use (Residential, commercial, and industrial): Global opportunity analysis and industry forecast. 2018-2025. Retrieved from https://www.alliedmarketresearch.com/white-cement-market. (Accessed on: July 19, 2022).
Krivenko, P.V.; Runova, R.F.; Sanickij, M.A.; Rudenko, I.I. (2015) Shhelochnye cementy: monografija, Ltd "Osnova", Kyiv (2015) (in Russian).
Blanco-Varela, M.T.; Puertas, F.; Vázquez, T; Palomo, A. (1996) Modelling of burnability of white cement made with CaF2 and CaSO4. Cem. Concr. Res. 26 [3], 457-464. https://doi.org/10.1016/S0008-8846(96)85033-2
Chistjakov, G.I. (1976) Vlijanie uslovij otbelivanija klinkera na dekorativnye svojstva cementov; V kn.: Shestoj mezhdunarodnyj congress po himii cementa. Moscow, 3, I58-161. (in Russian).
Luchinskij, G.P. (1971) Himija titana, Himija, Moscow, (1971) (in Russian).
Simons, P.Y.; Dachille, F. (1976) The structure of TiO2 II, a high-pressure phase of TiO2. Acta Crystallographica. 23 [2], 334-336. https://doi.org/10.1107/S0365110X67002713
von Weizsacker, E.U.; Hargroves, C.; Smith, M.H.; Desha, C.; Stasinopoulos, P. (2009) Factor five: transforming the global economy through 80% improvements in resource productivity. Earthscan, London (2009). ISBN 9780415848602. https://doi.org/10.4324/9781849774475
McLellan, B.C.; Williams, R.P.; Lay, J. van Riessen, A.; Corder, G.D. (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Produc. 19 [9], 1080-1090. https://doi.org/10.1016/j.jclepro.2011.02.010
Gluhovskij, V.D. (1979) Shhelochnye i shhelochno-shhelochnozemel'nye gidravlicheskie vjazhushhie i betony. Vishha shkola, Kyiv, (1979) (in Russian).
Gluhovskij, V.D. (1981) Shlakoshhelochnye betony na melkozernistyh zapolniteljah: Monografija. Vishha shkola, Kyiv, (1981). (in Russian).
Gluhovskij, V.D. (1992) Izbrannye Trudy. Budіvel'nik, Kyiv, (1992). (in Russian).
Krivenko, P.V. (1992) Special'nye shlakoshhelochnye cementy: monografija. Budіvel'nik, Kyiv, (1992). (in Russian).
Kryvenko, P.V.; Pushkar'ova K.K. (1993) Dovgovichnist' shlako-luzhnogo betonu: monografija. Budivel'nyk, Kyiv, (1993). (in Ukrainian).
Krivenko, P.V. (1994) Alkaline cements. Alkaline Cements and Concretes: Materials First Intern. Conf. Kyiv, 11-19.
Krivenko, P.V.; Petropavlovskij O.N.; Gelevera A.G.; Voznjuk G.V.; Pushkar V.I. (2009) Promyshlennye shhelochnye cementy i ih effektivnost. Nauchno-tehnicheskij sbornik. Aktual'nye problemy stroitel'stva". Rivne, 64-71. (in Russian).
Krivenko, P.V. (2017) Why alkaline activation - 60 years of the theory and practice of alkali-activated materials. J. Ceram. Sci. Technol. 8 [3], 323-334.
Shi, C.; Krivenko, P.; Della, Roy (2014) Alkaline activated cements and concretes: Monograph Engineering & Technology, London, (2014).
Fernández-Jiménez, A.; Garcia-Lodeiro, I.; Maltseva, O.; Palomo, A. (2019) Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals. J. Am. Ceram. Soc. 102 [1], 427-436. https://doi.org/10.1111/jace.15939
Krivenko, P.; Petropavlovsky, O.; Kovalchuk, O.; Pasko, А.; Lapovska, S. (2018) Designof the composition of alkali activated Portland cement using mineral additives of technogenic origin. Eastern-Europ. J. Enterp. Technol. 4 [6 (94)], 6-15. https://doi.org/10.15587/1729-4061.2018.140324
Krivenko, P.V.; Petropavlovsky, O.N.; Gots, V.I.; Rostovskaya, G.S. (2009) Alkali activation of composite cement. Ibausil. Internationale Baustofftagung (Weimar). 1, 445-456.
Chaouche, M.; Gao, Х.Х.; Cyr, М.; Cotte, М.; Frouin, L. (2017) On the origin of the blue/green color of blast-furnace slag-based materials: Sulfur K-edge XANES investigation. J. Am. Ceram. Soc. 100, 1707-16. https://doi.org/10.1111/jace.14670
Labrincha, J.; Puertas, F.; Schroeyers, W., Kovler, K.; Pontikes, Y.; Nuccetelli, C. (2017) 7-From NORM by-products to building materials. Naturally occurring radioactive materials in construction. Woodhead Publishing, 183-252. https://doi.org/10.1016/B978-0-08-102009-8.00007-4
Sidochenko, I.M.; Krugljak, S.L.; Rumyna, G.V.; Gluhovskij, V.D.; Skurchinskaja, Zh.V. (1974) A.s. № 446480 Vjazhushhee. Zajavl. 15.01.73. Bjul. izobret., 38. (in Russian).
Gluhovskij, V.D.; Pis'mennaja, A.Ju.; Rumyna, G.V. (1981) Ispol'zovanie krasnogo shlama dlja poluchenija shlakoshhelochnogo dekorativnogo vjazhushhego. J. Stroitel'nye materialy, izdelija i sanitarnaja tehnik. 4, 35-36. (in Russian).
Krivenko, P.V.; Kovalchuk, A.Y. (2019) Management of the decorative properties of alkali cements. J. Build. Eng. 2 [95], 280-285. https://doi.org/10.29295/2311-7257-2019-96-2-280-285
Bernal, S.A.; Provis, J.L.; Myers, R.J.; Racktl, S.N.; van Deventer, J.S.J. (2015) Role of carbonates in the chemicalevolution of sodium carbonate-activated slag binders. J. Mater. Struct. 48 [3], 517-529. https://doi.org/10.1617/s11527-014-0412-6
Krivenko, P.V.; Kovalchuk, A.Y.; Ostrovskaja, L.M. (2011) Studying of posibility of increase of slag-alkali cements whiteness degree. J. Collection «Building materials, producters and technical equipment». Kyiv, Research Institute of Building Materials and Products. 41, 10-14.
Krivenko, P.; Petropavlvskyy, O.; Puskar, V.; Ostrovska, L. (2011) Decorative alkaline cements. IV Intern. Symp: Non-Traditional Cement & Concrete. Brno, 257-265.
Kryvenko, P.; Sanytsky, M.; Kropyvnytska, T.; Kotiv, R. (2014) Decorative multi-component alkali activated cements for restoration and finishing works. Adv. Mat. Res. 897, 45-48. https://doi.org/10.4028/www.scientific.net/AMR.897.45
Fernandes de Magalhães, L.; França, S.; dos Santos Oliveira, M.; Fiorotti Peixoto, R.A.; Araújo Lima Bessa, S.; da Silva Bezerra, A.C. (2020) Iron ore tailings as a supplementary cementitious material in the production of pigmented cements. J. Clean. Prod. 274,123260. https://doi.org/10.1016/j.jclepro.2020.123260
Barros Galvão, J.L.; Dias Andrade, H.; Brigolini, G.; Fiorotti Peixoto, R.A.; Castro Mendes, J. (2018) Reuse of iron ore tailings from tailings dams as pigment for sustainable paints. J. Clean. Prod. 200, 412-422. https://doi.org/10.1016/j.jclepro.2018.07.313
Fontes, W.; Gonçalves Fontes, G.; Pinto Costa, E.C.; Castro Mendes, J.; Brigolini, G.; Fiorotti Peixoto, R.A. (2018) Iron ore tailings in the production of cement tiles: a value analysis on building sustainability. J. Amb. Cons. 18 [4], 395-412. https://doi.org/10.1590/s1678-86212018000400312
Ghalehnovi, M.; Roshan, N.; Hakak, E.; Asadi Shamsabadi, E.; de Brito, J. (2019) Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. J. Clean. Prod. 240, 118213. https://doi.org/10.1016/j.jclepro.2019.118213
Rashad, A.M.; Morsi, W.M.; Khafaga, S.A.; (2021) Effect of limestone powder on mechanical strength, durability and drying shrinkage of alkali-activated slag pastes. Innov. Infrastruct. Solut. 127. https://doi.org/10.1007/s41062-021-00496-y
Borziak, O.S.; Plugin, A.A.; Chepurna, S.M.; Zavalniy, O.V.; Dudin, O.A. (2019) The effect of added finely dispersed calcite on the corrosion resistance of cement compositions. IOP Conference Series: Materials Science and Engineering. 708: 012080. . https://doi.org/10.1088/1757-899X/708/1/012080
Chepurna, S.; Borziak, O.; Zubenko, S. (2019) Concretes, modified by the addition of high-diffused chalk, for small architectural forms. J. MSF. 968, 82-88. https://doi.org/10.4028/www.scientific.net/MSF.968.82
Hohol, M.; Lubenets, V.l; Komarovska-Porokhnyavets, O.; Sanytsky, M. (2020) Effect of Nano-TiO2 and ETS antifungal agent addition on the mechanical and biocidal properties of cement mortars. Proceedings of EcoComfort 2020. 134-141. https://doi.org/10.1007/978-3-030-57340-9_17
Hohol, M.; Sanytsky, M.; Kropyvnytska, T.; Barylyak, A.; Bobitski, Y. (2020) The effect of sulfur- and carbon-codoped TiO2 nanocomposite on the photocatalytic and mechanical properties of cement mortars. Eastern-Europ. J. Enterp. Technol. 4 [6-106], 6-14. https://doi.org/10.15587/1729-4061.2020.210218
DSTU B V.2.7-181:2009 (2009) Cementy luzhni. Tehnichni umovy. Ministerstvo regional'nogo rozvytku ta budivnyctva Ukrai'ny, Kyiv. (in Ukrainian).
DSTU EN 196-1:2019 (EN 196-1:2016, IDT) (2020) Metody vyprobuvannja cementu. Chastyna 1. Vyznachennja micnosti. Minbud Ukrai'ny, Kyiv. (in Ukrainian).
Voznesenskij, V.A.; Ljashenko, T.V.; Ogarkov, B.L. (1989) Chislennye metody reshenija stroitel'no-tehnologicheskih zadach na JeVM. Vishha shkola, Kyiv. (1989). Retrieved from http://mx.ogasa.org.ua/handle/123456789/331 (in Russian).
Butt, Ju.M.; Timashev, V.V. (1973) Praktikum po himicheskoj tehnologi vjazhushhih veshhestv. Vysshaja shkola, Moscow. (in Russian).
DSTU B V.2.7-47-96 Betony. (1997) Metody opredelenija morozoustojchivosti. Obshhie trebovanija. Gosudarstvennyj komitet po delam gorodskogo stroitel'stva i arhitektury, Kyiv. (in Ukrainian).
DSTU B V.2.7-268:2011 (2012) Portlandcement kol'orovyj. Tehnichni umovy. Minregion Ukrai'ny, Kyiv. (in Ukrainian).
DSTU B V.2.7-69-98 (1999) Dobavki dlja betonov. Metody opredelenija jeffektivnosti. Kyiv : Gosstroj Ukrainy. (in Ukrainian).
EN 1542-1999 (1999) Products and systems for the protection and repair of concrete structures.Test methods. Measurement of bond strength by pull-off, European Committee for Standardization.
Gorshkov, V.S.; Timashev, V.V.; Savel'ev, V.G. (1981) Metody fiziko-himicheskogo analiza vjazhushhih veshhestv. Vysshaja shkola, Moscow, (1981). (in Russian).
Semenov, E.I. (1981) Mineralogicheskie tablicy : Spravochnik. Nedra, Moscow, (1981). (in Russian).
DSTU B V.2.7-257:2011 (2011) Portlandcementy belye. Tehnicheskie uslovija. NDІBMV, Budstandart, Kyiv. (in Ukrainian).
Kovalchuk, O; Grabovchak, V; Govdun, Y. (2018) Alkali activated cements mix design for concretes application in high corrosive conditions. Matec Web Conf. 230 [94], 03007. https://doi.org/10.1051/matecconf/201823003007
Karavajev, T.A. (2015) Vodno-dyspersijni farby: tovaroznavcha ocinka: monograph. Kyi'vs'kyj nacional'nyj torgovo-ekonomichnyj universytet, Kyiv. (2015). (in Ukrainian).
Kropyvnytska, T.; Semeniv, R.; Kotiv, R.; Kaminskyy, A.; Hots, V.; (2019) Studying the effect of nanoliquids on the operational properties of brick building structures. Eastern-Europ. J. Enterp. Technol. 5/6 [95], 27-32. https://doi.org/10.15587/1729-4061.2018.145246
Lutskin, Y.; Shynkevych, O.; Myronenko, I.; Zakabluk, S.; Surkov, O. (2018) The influence of the content on structure and properties of geopolymer composites on silicate matrix. Matec Web Conf. 230, 03011. https://doi.org/10.1051/matecconf/201823003011
Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. (2017) Effect of cement substitution by lime stone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 77, 86-101. https://doi.org/10.1016/j.cemconcomp.2016.12.009
Li Leo, G.; Kwan Albert, K.H. (2015) Adding lime stone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete. Cem. Concr. Compos. 60, 17-24. https://doi.org/10.1016/j.cemconcomp.2015.02.006
Smirnova, O.M.; Belentsov, Y.A.; Kharitonov, A.M. (2019) Influence of polyolefin fibers on the strength and deformability properties of road pavement concrete. J. Traffic Transp. Eng. 6 [4], 407-417. https://doi.org/10.1016/j.jtte.2017.12.004
Spravochnik himika 21. Himija i himicheskaja tehnologija. 98. Retrieved from https://www.chem21.info/info/72743/. (Accessed on: June 19, 2022). (in Russian).
Ocheretnyj, V.P.; Koval'skij, V.P.; Mashnickij, M.P. (2006) Kompleksnaja aktivnaja mineral'naja dobavka na osnove othodov promyshlennosti. Sbornik nauchnyh trudov po materialam IV mezhdunarodnoj nauchno-prakticheskoj Internet-konferencii "Sostojanie sovremennoj stroitel'noj nauki - 2006". Poltavskij CNTJeI, Poltava, 116-121. (in Russian).
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Ministry of Education and Science of Ukraine
Grant numbers 1020U001010