Influencia de la combinación de nano-SiO2 y nano-Fe2O3 en la resistencia a compresión, resistencia a tracción, porosidad y resistividad eléctrica de morteros de cemento.
DOI:
https://doi.org/10.3989/mc.2018.10716Palabras clave:
Adición activa, Mortero, Resistencia a la compresión, Propiedades mecánicas, HidrataciónResumen
Se estudia la resistencia a compresión y flexión, porosidad y resistividad eléctrica de morteros de cemento con nano-Fe2O3 y nano-SiO2. La sílice amorfa reacciona con el hidróxido de calcio formado en la hidratación del C3S y C2S. La tasa de reacción puzolánica es proporcional a la cantidad de sílice amorfa y la superficie disponible para la reacción, esperando que las partículas finas de nano-Fe2O3 y nano-SiO2 mejoren las propiedades de los morteros. Los resultados experimentales han mostrado que la resistencia a compresión a siete y 28 días de morteros con partículas de nano-Fe2O3 y nano-SiO2 era, en ocasiones, inferior a la obtenida con el mortero de referencia. Se muestra que las nano-partículas no siempre son capaces de mejorar la resistencia de los morteros. Las medidas mediante porosimetría de intrusión de mercurio (PIM) de la distribución de tamaño de poro (DTP), porosidad total y diámetro de poro crítico confirmaron estos resultados.
Descargas
Citas
Pavía, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. (2016) Effect of pozzolans with different physical and chemical characteristics on concrete properties. Mater. Construcc. 66 [322], e083. https://doi.org/10.3989/mc.2016.01815
Fairbairn, E.M.R.; Americano, B.B.; Cordeiro, G.C.; Paula, T.P.; Toledo Filho, R.D.; Silvoso, M.M. (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manag. 91 [9], 1864–1871. https://doi.org/10.1016/j.jenvman.2010.04.008 PMid:20493626
Argiz, C.; Menéndez, E.; Sanjuán, M.A. (2013) Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement. Mater. Construcc. 309, 49–64.
Roux, N.; Andrade, C.; Sanjuán, M. (1996) Experimental Study of Durability of Reactive Powder Concretes. J. Mater. Civil Eng. 8 [1], 1–6. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:1(1)
Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Moragues, A. (2015) Effect of silica fume fineness on the improvement of Portland cement strength performance. Constr. Build. Mater. 96, 55–64. https://doi.org/10.1016/j.conbuildmat.2015.07.092
Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, Ch. (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21(3), 539–545. https://doi.org/10.1016/j.conbuildmat.2005.09.001
Haruehansapong,S.; Pulngern, T.; Chucheepsakul, S. (2014) Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Constr. Build. Mater. 50, 471–477. https://doi.org/10.1016/j.conbuildmat.2013.10.002
Li, H.; Xiao, H.; Yuan, J.; Ou, J. (2004) Microstructure of cement mortar with nano-particles. Compos Part B Eng. 35 [2], 185–189. https://doi.org/10.1016/S1359-8368(03)00052-0
Jo, B.W.; Kim, C.H.; Tae, G.H. (2007) Characteristics of cement mortar with nano-SiO2 particles. Construct. Build. Mater. 21, 1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
Lin, K.L.; Chang, W.C.; Lin, D.F.; Luo, H.L.; Tsai, M.C. (2008) Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar. J. Environ. Manage. 88 [4], 708–714. https://doi.org/10.1016/j.jenvman.2007.03.036 PMid:17498863
Ji, T. (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35 [10], 1943–1947. https://doi.org/10.1016/j.cemconres.2005.07.004
Nazari, A.; Riahi, S. (2011) Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nano-particles as binder. Energ. Buildings 43 [4], 864–872. https://doi.org/10.1016/j.enbuild.2010.12.006
Jalal, M.; Mansouri, E.; Sharifipour, M.; Pouladkhan, A.R. (2012) Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Design 34, 389–400. https://doi.org/10.1016/j.matdes.2011.08.037
Oltulu, M.; Sahin, R. S. (2011) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mater. Sci. Eng. A 528 [22–23], 7012–7019. https://doi.org/10.1016/j.msea.2011.05.054
Mohseni, E.; Miyandehi, B.M.; Yang, J.; Yazdi, M.A. (2015) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Constr. Build. Mater. 84, 331–340. https://doi.org/10.1016/j.conbuildmat.2015.03.006
Horszczaruk, E.; Mijowska, E.; Cendrowski, K.; Mijowska, S.; Sikora, P. (2014) Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar. Constr. Build. Mater. 66, 418–421. https://doi.org/10.1016/j.conbuildmat.2014.05.061
Kontoleontos, F.; Tsakiridis, P.E.; Marinos, A.; Kaoidas, V.; Katsioti, M. (2012) Influence of colloidal nanosilica on ultrafine cement hydration: Physicolchemical and microstructural characterization. Constr. Build. Mater. 35, 347–360. https://doi.org/10.1016/j.conbuildmat.2012.04.022
Sáez del Bosque, I.F.; Martínez-Ramírez; S.; Blanco-Varela, M.T. (2015) Calorimetric study of the early stages of the nanosilica - tricalcium silicate hydration. Effect of temperature. Mater. Construcc. 65 [320], e070. https://doi.org/10.3989/mc.2015.06814
Thomas, J.J.; Jennings, H.M.; Chen, J.J. (2009) Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Phys. Chem. C 113 [11], 4327–4334. https://doi.org/10.1021/jp809811w
Land, G.; Stephan, D. (2012) The influence of nano-silica on the hydration of ordinary Portland cement. J. Mater. Sci. 47 [2], 1011–1017. https://doi.org/10.1007/s10853-011-5881-1
Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.V.; Akasaki, J.L.; Payá, J. (2014) New method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical conductivity measurements in lime:pozzolan suspensions. Mater. Construcc. 64 [316], e032. https://doi.org/10.3989/mc.2014.00914
Kong, D.; Du, X.; Wei, X.; Zhang, H.; Yang, Y.; Shah, S. P. (2012) Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr. Build. Mater. 37, 707–715. https://doi.org/10.1016/j.conbuildmat.2012.08.006
EN 196–1 (2016) Methods of testing cement - Part 1: Determination of strength. European Committee for Standardization (CEN), Brussels.
EN 934–2 (2009) Admixtures for concrete, mortar and grout - Part 2: Concrete admixtures - Definitions, requirements, conformity, marking and labelling. European Committee for Standardization (CEN), Brussels.
ASTM C1202 (2012) Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. Book of Standards Volume: 04.02. ASTM International, West Conshohocken, PA, 19428–2959 USA.
UNE 83988–1 (2008) Concrete durability. Test methods. Determination of the electrical resistivity. Part 1: Direct test (reference method). AENOR, Madrid.
Andrade, C. (1993) Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 23 [3], 724–742. https://doi.org/10.1016/0008-8846(93)90023-3
Sanjuán M.A. (2000) Overview on electrochemical parameters to assess the corrosion state of steel reinforcement in calcium aluminate cement mortar and concrete. J. Mater. Sci. 35 [1], 105–108. https://doi.org/10.1023/A:1004748801193
Sajedi, F.; Razak, H.A. (2011) Effects of curing regimes and cement fineness on the compressive strength of ordinary Portland cement mortars. Constr. Build. Mater. 25, 2036–2045. https://doi.org/10.1016/j.conbuildmat.2010.11.043
Andrade, C.; D'Andrea, R. (2010) Electrical resistivity as microstructural parameter for the modelling of service life of reinforced concrete structures. 2nd International Symposium on Service Life Design for Infrastructure, 4–6 October 2010, Delft, The Netherlands. 379–388. PMid:21181198 PMCid:PMC3312604
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.