Función de calefacción en pastas de cemento con adición de nanofibras de carbono

Autores/as

  • O. Galao Universidad de Alicante
  • F. J. Baeza Universidad de Alicante
  • E. Zornoza Universidad de Alicante
  • P. Garcés Universidad de Alicante

DOI:

https://doi.org/10.3989/mc.2014.01713

Palabras clave:

Cemento, Nanofibras de carbono, Calefacción

Resumen


En este artículo se estudia la viabilidad del uso de matrices cementicias con adición de nanofibras de carbono (NFC) como elementos calefactores. Esto permitiría aumentar la temperatura de estancias en edificación o el deshielo de pavimentos en obras civiles. Se han fabricado pastas de cemento con distintas dosificaciones de NFC (0, 1, 2 y 5% respecto masa del cemento) y sometidas al paso de corriente continua a distintos potenciales fijos (50, 100 y 150 V), mientras se controlaba la temperatura en distintos puntos. Se ha estudiado la viabilidad de utilizar la proyección de la pasta fresca como método de puesta en obra, sin perjudicar la eficiencia del sistema. Se consiguieron temperaturas de hasta 138 °C (con velocidades iniciales de 10 °C/min) para pasta proyectada con 5% NFC. Además se ha detectado la necesidad de un potencial mínimo para que la densidad de corriente resultante sea suficiente para producir el efecto esperado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Baeza, F.J.; Chung, D.D.L.; Zornoza, E.; Andión, L.G.; Garcés, P. (2010) Triple percolation in concrete reinforced with carbon fiber. ACI Mater. J., 107 [4], 396–402.

Chung, D.D.L. (2002) Electrical Conduction Behavior of Cement-Matrix. Composites. J. Mater. Eng. Perform., 11 [2], 194–204. http://dx.doi.org/10.1361/105994902770344268

Galao, O. (2012) Matrices cementicias multifuncionales mediante adición de nanofibras de carbono. Ph.D. Thesis, University of Alicante, Spain.

Chung, D.D.L. (2001) Functional Properties of Cement-Matrix Composites. J. Mater. Sci., 36, 1315–1324. http://dx.doi.org/10.1023/A:1017522616006

Yehia, S.; Tuan, C. (1999) Conductive concrete overlay for bridge deck deicing. ACI Mater. J., 96 [3], 382–390.

Yehia, S.; Tuan, C.; Ferdon, D.; Chen, B. (2000) Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. ACI Mater. J., 97 [2], 172–181.

Chung, D.D.L. (2001) Cement-Matrix Composites for Thermal Engineering. Appl. Therm. Eng., 21, 1607–1619. http://dx.doi.org/10.1016/S1359-4311(01)00043-6

Chung, D.D.L. (2001) Materials for thermal conduction. Appl. Therm. Eng., 21, 1593–1605. http://dx.doi.org/10.1016/S1359-4311(01)00042-4

Wang, S.; Wen, S.; Chung, D.D.L. (2004) Resistance heating using electrically conductive cements. Adv. Cem. Res., 16, 161–166. http://dx.doi.org/10.1680/adcr.2004.16.4.161

Tuan, C. (2004) Electrical resistance heating of conductive concrete containing steel fibers and shavings. ACI Mater. J., 101 [1], 65–70.

Chung, D.D.L. (2004) Self-heating structural materials. Smart Mater. Struct., 13 [3], 562–565. . http://dx.doi.org/10.1088/0964-1726/13/3/015

Tuan, C.; Yehia, S. (2004) Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing. ACI Mater. J., 101 [4], 287–293.

Chang, C.; Ho, M.; Song, G.; Mo, Y.L.; Li, H. (2009) A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements. Smart Mater. Struct., 18 [12], 1–5. http://dx.doi.org/10.1088/0964-1726/18/12/127001

Zhao, H.M.; Wu, Z.M.; Wang, S.G.; Zheng, J.J.; Che, G.J. (2011) Concrete pavement deicing with carbon fiber heating wires. Cold Reg. Sci. Technol., 65 [3], 413–420. http://dx.doi.org/10.1016/j.coldregions.2010.10.010

Li, H.; Zhang, Q.; Xiao, H. (2013) Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Reg. Sci. Technol., 86, 22–35. http://dx.doi.org/10.1016/j.coldregions.2012.10.007

Baeza, F.J.; Zornoza, E.; Andión, L.G.; Ivorra, S.; Garcés, P. (2011) Variables affecting strain sensing function in cementitious composites with carbon fibers, Comput. Concrete, 8 [2], 229–241. http://dx.doi.org/10.12989/cac.2011.8.2.229

Chen, P.W.; Chung, D.D.L. (1996) Concrete as a new strain/stress sensor. Compos. Part B-Eng., 27B [1], 11–23. http://dx.doi.org/10.1016/1359-8368(95)00002-X

Zornoza, E.; Catalá, G.; Jiménez, F.; Andión, L.G.; Garcés, P. (2010) Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash. Mater. Construcc., 60 [300], 21–32.

Zornoza, E.; Galao, O.; Baeza, F.J.; Garcés, P. (2012) Electromagnetic interference shielding of cement pastes with carbon nanofibers. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Yang, Y.; Gupta.; M.C.; Dudley, K.L. (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18 [345701], 4.

Pérez, A.; Climent, M.A.; Garcés, P. (2010) Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as an anode, Corros. Sci., 52 [5], 1576–1581. http://dx.doi.org/10.1016/j.corsci.2010.01.016

del Moral, B.; Galao, O.; Antón, C.; Climent, M.A.; Garcés, P. (2013) Usability of cement paste containing carbon nanofibers as an anode in electrochemical chloride extraction from concrete. Mater. Construcc., 63 [309], 39–48. http://dx.doi.org/10.3989/mc.2012.03111

Garcés, P.; Carmona, J.; Galao, O.; Zornoza, E.; Climent, M.A. (2012) Carbon nanofibre cement paste as anode for electrochemical chloride removal. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Bertolini L.; Bolzoni F.; Pastore T.; Pedeferri P. (2004) Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete. Cement Concrete Res., 34 [4], 681–694. http://dx.doi.org/10.1016/j.cemconres.2003.10.018

Xu, J.; Yao, W. (2009) Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode. Constr. Build. Mater., 23 [6], 2220–2226. http://dx.doi.org/10.1016/j.conbuildmat.2008.12.002

Alcaide, J.S.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Construcc., 57 [288], 33–48.

Garcés, P.; Zornoza, E.; Alcocel, E.G.; Galao, O.; Andión, L.G. (2012) Mechanical properties and corrosion of CAC mortars with carbon fibers. Constr. Build. Mater., 34, 91–96. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.020

Chung, D.D.L. (2004) Cement-Matrix Structural Nanocomposites. Met. Mater. Int., 10 [1], 55–67. http://dx.doi.org/10.1007/BF03027364. http://dx.doi.org/10.1007/BF03027364

Coleman, J.N.; Khan, U.; Blau, W.J.; Gun'ko, Y.K. (2006) Small but strong: A review of the mechanical properties of carbon nanotube polymer composites. Carbon, 44 [9], 1624–1652. http://dx.doi.org/10.1016/j.carbon.2006.02.038

Wang, J.G.; Fang, Z.P.; Gu, A.J.; Xu, L.H.; Liu, F. (2006) Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J. Appl. Polym. Sci., 100 [1], 97–104. http://dx.doi.org/10.1002/app.22647

Tibbetts, G.G.; Lake, M.L.; Strong, K.L.; Rice, B.P. (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol., 67 [7–8], 1709–1718. http://dx.doi.org/10.1016/j.compscitech.2006.06.015

Marrs, B.; Andrews, R.; Pienkowski, D. (2007) Multiwall carbon nanotubes enhance the fatigue performance of physiologically maintained methyl methacrylate-styrene copolymer. Carbon, 45 [10], 2098–2104. http://dx.doi.org/10.1016/j.carbon.2007.05.013

Abu Al-Rub, R.K.; Tyson, B.M. (2010) Assessment the Potential of Using Carbon Nanotubes Reinforcements for Improving the Tensile/Flexural Strength and Fracture Toughness of Portland Cement Paste for Damage Resistant Concrete Transportation Infrastructures. Technical Report No. SWUTC/10/476660-00011-1, http://ntl.bts.gov/lib/38000/38500/38505/476660-00011-1.pdf

Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. (2013) Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials, 6, 841–855. http://dx.doi.org/10.3390/ma6030841

Galao, O.; Zornoza, E.; Baeza, F.J.; Bernabeu, A.; Garcés, P. (2012) Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Mater. Construcc., 62 [307], 343–357. http://dx.doi.org/10.3989/mc.2012.01211

Zhang, K.; Han, B.; Yu, X. (2011) Nickel particle based electrical resistance heating cementitious composites. Cold Reg. Sci. Technol., 69, 64–69. http://dx.doi.org/10.1016/j.coldregions.2011.07.002

Publicado

2014-03-30

Cómo citar

Galao, O., Baeza, F. J., Zornoza, E., & Garcés, P. (2014). Función de calefacción en pastas de cemento con adición de nanofibras de carbono. Materiales De Construcción, 64(314), e015. https://doi.org/10.3989/mc.2014.01713

Número

Sección

Artículos

Artículos más leídos del mismo autor/a