Evaluation of electric properties of cement mortars containing pozzolans

Authors

  • J. M. Cruz Departamento de Física Aplicada, Universidad Politécnica de Valencia
  • J. Payá Instituto de Ciencia y Tecnología del Hormigón (ICITECH). Universidad Politécnica de Valencia
  • L. F. Lalinde Instituto de Ciencia y Tecnología del Hormigón (ICITECH). Universidad Politécnica de Valencia
  • I. C. Fita Departamento de Física Aplicada, Universidad Politécnica de Valencia

DOI:

https://doi.org/10.3989/mc.2010.53709

Keywords:

Active addition, Thermal analysis, Hydration, Calcium hydroxide, Electrical impedance

Abstract


In this paper the evolution of the microstructure of Portland cement mortar is analyzed, by using electrical impedance measurements. Cement mortars are compared without and with two pozzolanic substitutions: spent fluid catalytic cracking catalyst (FCC) and metakaolin (MK). The measurement method is described and the model for analyzing the electrical impedance spectra is developed. Three electrical parameters are defined: electrical resistivity, capacitance exponent, and capacitive factor. The results show a significant increase in resistivity of the mortars with pozzolans after 7 days of curing, especially in mortars with MK. This increase is correlated with lime-fixing by the pozzolans. The capacitive properties evolve differently at early age, but reach the same values after 148 days. The electrical and mineralogical data show that the evolution of the microstructure in the mortar with MK starts before it does in the mortars with FCC and that the final microstructure becomes different.

Downloads

Download data is not yet available.

References

(1) Snyder, K.A., Bentz, D.P.: “Suspended hydration and loss of freezable water in cement pastes exposed to 90% relative humidity”. Cem. Concr. Res., Vol. 34, nº 11 (2004), pp. 2045-2056. doi:10.1016/j.cemconres.2004.03.007

(2) Cabeza, M., Keddam, M., Novoa, X.R., Sanchez, I., Takenouti, H.: “Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste”. Electrochim. Acta, Vol. 51, nº 8-9 (2006), pp. 1831-1841. doi:10.1016/j.electacta.2005.02.125

(3) Snyder, K.A.: “The relationship between the formation factor and the diffusion coefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations”. Concr. Sci. Eng., Vol. 3, nº 12 (2001), pp. 216-224.

(4) Alonso, C., Andrade, C., Izquierdo, M., Novoa, X.R., Perez, M.C.: “Effect of protective oxide scales in the macrogalvanic behaviour of concrete reinforcements”. Corros. Sci., Vol. 40, nº8 (1998), pp. 1379-1389. doi:10.1016/S0010-938X(98)00040-7

(5) Cabeza, M., Merino, P., Miranda, A., Novoa, X.R., Sanchez I.: “Impedance spectroscopy study of hardened Portland cement paste”. Cem. Concr. Res., Vol 32, nº 6, (2002), pp. 881-891. doi:10.1016/S0008-8846(02)00720-2

(6) Ji, X., Chan, S.Y.N., Feng, N.: “Fractal model for simulating the space-filling process of cement hydrates and fractal dimensions of pore structure of cement-based materials”. Cem. Concr. Res., Vol. 27, nº 11 (1997), pp. 1691-1699. doi:10.1016/S0008-8846(97)00157-9

(7) Malhotra, V.M., Mehta, P.K.: “Pozzolanic and cementitious materials”. Gordon and Brach Publishers, Ottawa, 1996.

(8) De Silva, P.S., Glasser, F.P. : « Phase relations in the system CaO-Al2O3-SiO2-H2O relevant to metakaolin-calcium hydroxide hydration”. Cem. Concr. Res., Vol. 23, nº 3, (1993), pp. 627-639. doi:10.1016/0008-8846(93)90014-Z

(9) Murat, M., Comel, C.: “Hydration reaction and hardening of calcined clays and related minerals. Influence of calcination process of Kaolinite on mechanical strengths of hardened metakaolinite”. Cem. Concr. Res, Vol. 13, nº 5 (1983), pp. 631-637. doi:10.1016/0008-8846(83)90052-2

(10) Payá, J., Monzó, J., Borrachero, M.V.: “Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements”. Cem. Concr. Res., Vol. 31, nº 1 (2001), pp. 57-61. doi:10.1016/S0008-8846(00)00432-4

(11) Zornoza, E., Garcés, P., Payá, J.: “Estudio de la velocidad de corrosión de aceros embebidos en morteros de cemento sustituidos con residuo de catalizador de craqueo catalítico (FC3R)”. Mater. Construcc., Vol. 58, nº 292 (2008), pp. 27-43.

(12) Borrachero, M.V., Monzó, J., Payá, J., Peris-Mora, E., Vunda, C., Velázquez, S., Soriano, L.: “El catalizador gastado de craqueo catalítico adicionado al cemento Portlánd: las primeras 48 horas de curado y la evolución de la resistencia mecánica”. VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia, (2002) pp. 579-589.

(13) García de Lomas M., Sánchez de Rojas M., Frías M.I.: “Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars”. J. Therm. Anal. Cal., Vol. 90, nº 2 (2007), pp.443-447 . doi:10.1007/s10973-006-7921-7

(14) Pinto, C., Büchler, P.M., Dweck, J.: “Pozzolanic properties of a residual FCC catalyst during the early stage of cement hydration”. J. Therm. Anal. Cal., Vol. 87, nº 3 (2007), pp. 715-720. doi:10.1007/s10973-006-7772-2

(15) Soriano Martínez, L.: “Nuevas aportaciones en el desarrollo de materiales cementantes con residuo de catalizador de craqueo catalítico usado”. Tesis Doctoral, Universidad Politécnica de Valencia, Valencia, 2007.

(16) Payá, J., Monzó, J., Borrachero, M.V., Velázquez, S.: “Chemical activation of pozzolanic reaction of fluid catalytic cracking residue (FC3R) in lime pastes: thermal analysis”. Adv. Cem. Res.,Vol. 16, nº 3 (2004), pp. 123-130.

(17) McCarter, W.J., Starrs, G., Chrisp, T.M.: “Electrical conductivity, diffusion, and permeability of Portland cement-based mortars”. Cem. Concr. Res., Vol. 30, nº 9 (2000), pp. 1395-1400. doi:10.1016/S0008-8846(00)00281-7

(18) Torrents, J.M., Mason, T.O., Garboczi, E.J.: “Impedance spectra of fiber-reinforced cement-based composites. A modeling approach”. Cem. Concr. Res., Vol. 30, nº 4 (2000), pp. 585-592. doi:10.1016/S0008-8846(00)00211-8

(19) Kim, Y-M, Lee, J-H, Hong, S-H.: “Study of alinite cement hydration by impedance spectroscopy”. Cem. Concr. Res., Vol. 33, nº 3 (2003), pp. 299-304. doi:10.1016/S0008-8846(02)00944-4

(20) McCarter, W.J, Starrs, G., Chrisp, T.M.: “The complex impedance response of fly-ash cement revisited”. Cem. Concr. Res., Vol. 34, nº 10 (2004), pp. 1837-1843. doi:10.1016/j.cemconres.2004.01.013

(21) He Z., Li J.: “Non-contact resistivity measurement for characterization on thr hydration process of cement-paste with excess alkali” Adv. Cem. Res., Vol. 16, nº 1 (2004), pp. 29-34.

(22) Schiefelbein, S.L., Fried, N.A., Rhoads, K.G., Sadoway D.R.: “A high-accuracy, calibration-free technique for measuring the electrical conductivity of liquids”. Rev. Sci. Instrum., Vol. 69, nº 9 (1998), pp. 3308-3313. doi:10.1063/1.1149095

(23) MacDonald, J.R.: “Impedance Spectroscopy”, Wiley, New York, 1987

(24) Yoon, S.S., Kim, H.C., Hill, R.M.: “The dielectric response of hydrating porous cement paste”. J. Phys. D: Appl. Phys., Vol. 29, nº 3 (1996), pp. 869-875. doi:10.1088/0022-3727/29/3/054

(25) Wei, X., Li, Z.: “Study on hydration of Portland cement with fly ash using electrical measurement”. Mater. Struct., Vol. 38, nº 3 (2005), pp. 411-417.

(26) Olson, R.A., Jennings, H.M.: “Estimation of C-S-H content in a blended cement paste using water adsorption”. Cem. Concr. Res., Vol. 31, nº 3 (2001), pp. 351-356. doi:10.1016/S0008-8846(01)00454-9

(27) Thomas, J.J., Jennings, H.M.: “Effects of D2O and mixing on the early hydration kinetics of tricalcium silicate”. Chem. Mater., Vol.11, nº 7 (1999), pp. 1907-1914. doi:10.1021/cm9900857

(28) Livingston, R.A.: “Fractal nucleation and growth model for the hydration of tricalcium silicate”. Cem. Concr. Res., Vol. 30, nº 12 (2000), pp. 1853-1860. doi:10.1016/S0008-8846(00)00457-9

(29) Heinemann, A., Hermann, H., Haussler, F.: “SANS analysis of fractal microstructures in hydrating cement paste” Physica B 276-278 (2000), pp. 892-893. doi:10.1016/S0921-4526(99)01279-X

(30) Ficker, T., Len, A., Nemec, P.: “Notes on hydrated cement fractals investigated by SANS”. J. Phys. D: Appl. Phys., Vol. 40, nº 13 (2007), pp. 4055-4059. doi:10.1088/0022-3727/40/13/023

(31) Kriechbaum, M., Degovics, G., Tritthart, J., Laggner, P.: “Fractal structure of Portland cement paste during age hardening analyzed by small-angle-X-ray scattering”. Trends in colloid and Interface Science 79 (1989), pp. 101-105.

(32) Chindaprasirt, P., Rattanasak, U., Kendall, K.: International Conference on Pozzolan, Concrete and Geopolymer, Khon Kaen, Thailand, May 24-25 (2006), pp. 262-270.

(33) Payá, J., Monzó, J., Borrachero, M.V., Peris-Mora, E., Soriano, L., Velázquez, S.: “Study on the properties of different spent silicoaluminous catalysts and their use in cementing mixtures”. Eighth CANMET/ACI International Conference on Flyash, Silica Fume, Slag And Natural Pozzolans in Concrete. Las Vegas, USA. May 23-29 (2004), pp. 513-527.

(34) Payá, J., Monzó, J., Borrachero, M.V., Velázquez, S.: “Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R): Thermogravimetric analysis studies on FC3R- Portland cement pastes”. Cem. Concr. Res., Vol. 33, nº 4 (2003), pp. 603-609. doi:10.1016/S0008-8846(02)01026-8

(35) Payá, J., Monzó, J., Borrachero, M.V., Velázquez, S.: “The chemical activation of pozzolanic reaction of fluid catalytic cracking catalyst residue (FC3R) in lime pastes”. Adv. Cem. Res., Vol. 19, nº 1 (2007), pp. 9-16. doi:10.1680/adcr.2007.19.1.9

Downloads

Published

2011-03-31

How to Cite

Cruz, J. M., Payá, J., Lalinde, L. F., & Fita, I. C. (2011). Evaluation of electric properties of cement mortars containing pozzolans. Materiales De Construcción, 61(301), 7–26. https://doi.org/10.3989/mc.2010.53709

Issue

Section

Research Articles

Most read articles by the same author(s)