Efecto de diferentes sílices de alta área superficial sobre la reología de pastas de cemento

Autores/as

DOI:

https://doi.org/10.3989/mc.2020.15719

Palabras clave:

Reología, Trabajabilidad, Área superficial, Puzolana, Pasta de cemento

Resumen


Este trabajo estudia el efecto de la nanosílice (NS) sobre la reología de pastas de cemento por comparación con sílices de alta área superficial: humo de sílice (SF) y pirosílice (PS). Las pastas fueron fabricadas con diferentes relaciones agua-material cementante y sustituciones sólidas de sílice. Fueron ejecutados ensayos de demanda de agua, tiempo de fraguado y reología. Se encontró que la NS y SF disminuyen la viscosidad plástica, mientras que la PS la aumenta. Solo la PS tuvo efecto sobre el límite elástico. La NS presentó mayor disminución de la viscosidad, independientemente de su alta demanda de agua. Se concluyó que el comportamiento de las pastas con NS y SF es gobernado por el efecto de “rodamiento” de la sílice, por su grado de aglomeración y por su impacto en la fracción de sólidos. El comportamiento de las pastas con PS es gobernado por su capacidad de absorber agua.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Kwan, A.K.H.; Li, Y. (2013) Effects of fly ash microsphere on rheology, adhesiveness and strength of mortar. Constr. Build. Mater. 42, 137-145. https://doi.org/10.1016/j.conbuildmat.2013.01.015

Jal, P.K.; Sudarshan, M.; Saha, A.; Patel, S.; Mishra, B.K. (2004) Synthesis and characterization of nanosilica prepared by precipitation method. Coll. Surf. A Physicochem. Eng. Asp. 240 [1-3], 173-178. https://doi.org/10.1016/j.colsurfa.2004.03.021

El Sokkary, T. M.; Assal, H. H.; Kandeel, A. M. (2004) Effect of silica fume or granulated slag on sulphate attack of ordinary portland and alumina cement blend. Ceram. Int. 30 [2], 133-138. https://doi.org/10.1016/S0272-8842(03)00025-7

Gutsch, A.; Krämer, M.; Michael, G.; Mühlenweg, H.; Pridöhl, M.; Zimmermann, G. (2002) Gas-Phase production of nanoparticles. KONA Powder Part. J. 20, 24-37. https://doi.org/10.14356/kona.2002008

Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. (2013) Beneficial role of nanosilica in cement based materials - A review. Constr. Build. Mater. 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052

Björnström, J.; Martinelli, A.; Börjesson, L.; Panas, I.; (2004) Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem. Phys. Lett. 392 [1-3], 242-248. https://doi.org/10.1016/j.cplett.2004.05.071

Mendoza Reales, O.A.; Silva, E.C.C.M.; Paiva, M.D.M.; M.; Duda, P.; Toledo Filho, R.D. (2017) The role of surface area and compacity of nanoparticles on the rheology of cement paste 25.3. ACI Symp. Pub. 320, 25.1-25.14. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/51701063.

Tobón, J. I.; Mendoza Reales, O.; Retrepo, O.J.; Borrachero, M.V. (2018) Effect of pyrogenic silica and nanosilica on Portland cement matrices. J. Mater. Civ. Eng. 30 [10], 1-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002482

Mehdipour, I.; Khayat, K.H. (2018) Understanding the role of particle packing characteristics in rheo-physical properties of cementitious suspensions: A literature review. Constr. Build. Mater. 161, 340-353. https://doi.org/10.1016/j.conbuildmat.2017.11.147

Boukendakdji, O.; Kadri, E.H.; Kenai, S. (2012) Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of selfcompacting concrete. Cem. Concr. Compos. 34 [4], 583-590. https://doi.org/10.1016/j.cemconcomp.2011.08.013

Park, C.K.; Noh, M.H.; Park, T.H. (2005) Rheological properties of cementitious materials containing mineral admixtures. Cem. Concr. Res. 35 [5], 842-849. https://doi.org/10.1016/j.cemconres.2004.11.002

Deng, H.; Li, H. (2018) Assessment of self-sensing capability of carbon black engineered cementitious composites. Constr. Build. Mater. 173, 1-9. https://doi.org/10.1016/j.conbuildmat.2018.04.031

Mendoza-Reales, O.A.; Arias Jaramillo, Y.P.; Ochoa Botero, J.C.; Delgado, C.A.; Quintero, J.H.; Toledo Filho, R.D. (2018) Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes. Cem. Concr. Res. 107, 101-109. https://doi.org/10.1016/j.cemconres.2018.02.020

Quercia, G.; Hüsken, G.; Brouwers, H.J.H. (2012) Water demand of amorphous nano silica and its impact on the workability of cement paste. Cem. Concr. Res. 42 [2], 344-357. https://doi.org/10.1016/j.cemconres.2011.10.008

Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M. (2017) Applications of using nano material in concrete: A review. Constr. Build. Mater. 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005

Bowen, P. (2002). Particle size distribution measurement from millimeters to nanometers and from rods to platelets. J. Dispers. Sci. Technol. 23 [5], 631-662. https://doi.org/10.1081/DIS-120015368

Staiger, M.; Bowen, P.; Ketterer, J.; Bohonek, J. (2002) Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles. J. Dispers. Sci. Technol. 23 [5], 619-630. https://doi.org/10.1081/DIS-120015367

Hidalgo, A.; Petit, S.; Domingo, C.; Alonso, C.; Andrade, C. (2007) Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature. Part I: Portland cement pastes. Cem. Concr. Res. 37 [1], 63-70. https://doi.org/10.1016/j.cemconres.2006.10.002

Srinivasan, S.; Barbhuiya, S.A.; Charan, D.; Pandey, S.P. (2010) Characterising cement-superplasticiser interaction using zeta potential measurements. Constr. Build. Mater. 24 [12], 2517-2521. https://doi.org/10.1016/j.conbuildmat.2010.06.005

de Larrard, F. (1999) Concrete mixture proportioning a scientific approach, E. & F.N. Spon, London. https://doi.org/10.1201/9781482272055

Banfill, P.F.G. (2006) Rheology of fresh cement and concrete. Rheol. Reviews 2006. 61-130.

Burneau, A.; Barres, O.; Gallas, J.P.; Lavalley, J.C. (1990) Comparative Study of the Surface Hydroxyl Groups of Fumed and Precipitated Silicas. 2. Chatracterization by infrared spectroscopy of the interacctions with water. Langmuir. 6 [8], 1364-1372. https://doi.org/10.1021/la00098a008

Xie, X-L.; Liu, Q-X.; Li, R.K-Y.; Zhou, X-P.; Zhang, Q-X.; Yu, Z-Z.; Mai, Y-W. (2004) Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer. 45 [19], 6665-6673. https://doi.org/10.1016/j.polymer.2004.07.045

Asavapisit, S.; Fowler, G.; Cheeseman, C.R. (1997) Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem. Concr. Res. 27 [8], 1249-1260. https://doi.org/10.1016/S0008-8846(97)00109-9

Publicado

2020-11-04

Cómo citar

Tobón, J. I., Mendoza, O., Restrepo, O. J., Borrachero, M. V., & Payá, J. (2020). Efecto de diferentes sílices de alta área superficial sobre la reología de pastas de cemento. Materiales De Construcción, 70(340), e231. https://doi.org/10.3989/mc.2020.15719

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>