Directrices para evaluar la puesta en valor de un residuo en la fabricación de un material base cemento: producción de hormigón autocompactante a partir de sedimentos dragados

Autores/as

  • F. Rozas Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC)
  • A. Castillo Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC)
  • I. Martínez Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC)
  • M. Castellote Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC)

DOI:

https://doi.org/10.3989/mc.2015.10613

Palabras clave:

Protocolo, Tratamiento de residuos, Material cementíceo, Sedimento dragado, Hormigón autocompactante

Resumen


Este artículo presenta algunas directrices con el fin de analizar la posibilidad de incluir un material de desecho en la producción de un material base cemento estructural. En primer lugar, debe asegurarse la compatibilidad de los residuos con el material base cemento. Tras ello, si es necesario, se llevará a cabo la etapa de descontaminación del residuo. Después debe tomarse la decisión sobre el tipo de material a utilizar en base a diferentes aspectos, haciendo especial énfasis en la granulometría. Como último paso, deben evaluarse las propiedades mecánicas, ambientales y de durabilidad del producto final. El procedimiento a seguir se ilustra con un ejemplo concreto basado en la obtención de un hormigón autocompactante (SCC) incluyendo en su fabricación sedimentos dragados tomados de un puerto español.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Zaitri, R.; Bederina, M.; Bouziani, T.; Makhloufi, Z.; Hadjoudja, M. (2014) Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the.mixture design modelling approach. Constr. Build. Mater. 60, 8–16. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.062

2. Yan, D.Y.S.; Tang, I.Y.; Lo, I.M.C. (2014) Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction. Constr. Build. Mater. 64, 201–207. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.087

3. Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A. (2013) Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 38, 872–878. http://dx.doi.org/10.1016/j.conbuildmat.2012.09.011

4. Hassan, I.O.; Ismail, M.; Noruzman, A.H.; Yusuf, T.O.; Mehmannavaz, T.; Usman, J. (2013) Characterization of some key Industrial Waste products for sustainable Concrete production. Eds. Liu XH, Zhang KF, Li MZ. Material Design, Processing and Applications, Parts 1–4, 1091–1094. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.1091

5. de Oliveira, L.A.P.; Gomes, J.P.C.; Nepomuceno, M.C.S. (2013) The influence of wastes materials on the rheology of rendering mortars. Applied Rheology 23 [1], 11.

6. Barreca, F.; Fichera, C.R. (2013) Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy and Buildings 62, 507–513. http://dx.doi.org/10.1016/j.enbuild.2013.03.040

7. Di Palma, L.; Mancini, D.; Medici, F. (2012) Lab Scale Granulation Tests of Artificial Aggregate Production from Marine Sediments and Industrial Wastes. Bosicon 2012: 3rd International Conference on Contaminated Sites Remediation 28, 199–204. 9. Safiuddin, M.; Jumaat, M.Z.; Salam, M.A.; Islam, M.S.; Hashim, R. (2010) Utilization of solid wastes in construction materials. International Journal of the Physical Sciences 5, 1952–1963.

8. Valdes, A.J.; Martinez, C.M.; Romero, M.I.G.; Garcia, B.L.; del Pozo, J.M.M.; Vegas, A.T. (2010) Re-use of construction and demolition residues and industrial wastes for the elaboration or recycled eco-efficient concretes. Spanish Journal of Agricultural Research 8, 25–34. http://dx.doi.org/10.5424/sjar/2010081-1140

9. Safiuddin, M.; Jumaat, M.Z.; Salam, M.A.; Islam, M.S.; Hashim, R. (2010) Utilization of solid wastes in construction materials. International Journal of the Physical Sciences 5, 1952–1963.

10. Zdiri, M.; Abriak, N.E.; Ben Ouezdou, M.; Neji, J. (2009) The use of fluvial and marine sediments in the formulation of Roller Compacted Concrete for use in pavements. Environmental Technology 30, 809–815. http://dx.doi.org/10.1080/09593330902990097 PMid:19705664

11. Knoeri, C.; Nikolic, I.; Althaus, H.J.; Binder, C.R. (2014) Enhancing Recycling of Construction Materials: an Agent Based Model with Empirically Based Decision Parameters. Jasss-the Journal of Artificial Societies and Social Simulation 17.

12. Felekoglu, B. (2007) Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resources Conservation and Recycling 51, 770–791. http://dx.doi.org/10.1016/j.resconrec.2006.12.004

13. Bignozzi, M.C.; Sandrolini, F. (2006) Tyre rubber waste recycling in self-compacting concrete. Cem. Concr. Res. 36, 735–739. http://dx.doi.org/10.1016/j.cemconres.2005.12.011

14. Ho, D.W.S.; Sheinn, A.M.M.; Ng, C.C.; Tam, C.T. (2002) The use of quarry dust for SCC applications. Cem. Concr. Res. 32, 505–511. http://dx.doi.org/10.1016/S0008-8846(01)00726-8

15. Sua-Iam, G.; Makul, N. (2013) Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. Journal of Cleaner Production 57, 308–319. http://dx.doi.org/10.1016/j.jclepro.2013.06.009

16. Pereira-de Oliveira, L.A.; Nepomuceno, M.; Rangel, M. (2013) An eco-friendly self-compacting concrete with recycled coarse aggregates. Informes de la Construccion 65, 31–41. http://dx.doi.org/10.3989/ic.11.138

18. Krishnasami, R.; Malathy, R. (2013) Significance of blast furnace slag as coarse aggregate in self compacting concrete. Eds. Hou H, Tian L. Architecture, Building Materials and Engineering Management, Pts 1–4, 829–833. http://dx.doi.org/10.4028/www.scientific.net/amm.357-360.829

19. Azeredo, G.; Diniz, M. (2013) Self-compacting concrete obtained by the use of kaolin wastes. Constr.Build. Mater. 38, 515–523. http://dx.doi.org/10.1016/j.conbuildmat.2012.08.027

20. Gesoglu, M.; Guneyisi, E.; Kocabag, M.E.; Bayram, V.; Mermerdas, K. (2012) Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Constr.Build. Mater. 37, 160–170. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.092

21. Valdez, P.; Barragan, B.; Girbes, I.; Shuttleworth, N.; Cockburn, A. (2011) Use of waste from the marble industry as filler for the production of self-compacting concretes. Mater. Construcc. 61, 61–76.

22. Topçu, I. B.; Bilir, T.; Uygunoglu, T. (2009) Effect of waste marble dust content as filler on properties of self-compacting concrete. Constr. Build. Mater. 23, 1947–1953. http://dx.doi.org/10.1016/j.conbuildmat.2008.09.007

23. Kou, S.C.; Poon, C.S. (2009) Properties of self-compacting concrete prepared with recycled glass aggregate. Cem. Concr. Comp. 31, 107–113. http://dx.doi.org/10.1016/j.cemconcomp.2008.12.002

24. Nystroem, G.M.; Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. (2006) The use of desorbing agents in electrodialytic remediation of harbour sediment. Science of the Total Environment 357, 25–37. http://dx.doi.org/10.1016/j.scitotenv.2005.04.040 PMid:15936059

25. Castellote, M.; Andrade, C.; Alonso, C. (2000) Electrochemical removal of chlorides - Modelling of the extraction, resulting profiles and determination of the efficient time of treatment. Cem. Concr. Res. 30 [4], 615–621. http://dx.doi.org/10.1016/S0008-8846(00)00220-9

26. Rozas, F.; Castellote, M. (2012) Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochimica Acta 86, 102–109. http://dx.doi.org/10.1016/j.electacta.2012.03.068

27. Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. (2001) Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology 60, 371–380. http://dx.doi.org/10.1016/S0013-7952(00)00117-4

28. Castellote, M.; Ordó-ez, M.; Andrade, C.; Zuloaga, P.; Navarro, M. (2011) Electrochemical treatment to condition contaminated EAFD as addition to immobilisation mortar in low level waste concrete containers. Corrosion Engineering Science and Technology 46 [2], 190–194. http://dx.doi.org/10.1179/1743278210Y.0000000005

29. Montero, N.; Belzunce-Segarra, M.J.; Gonzalez, J.L.; Menchaca, I.; Garmendia, J.M.; Etxebarria, N.; Nieto, O.; Franco, J. (2013) Application of Toxicity Identification Evaluation (TIE) procedures for the characterization and management of dredged harbor sediments. Marine Pollution Bulletin 71, 259–268. http://dx.doi.org/10.1016/j.marpolbul.2013.01.038 PMid:23465571

30. Castellote, M.; Andrade, C.; Alonso, C. (2001) Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber-Comparison with natural diffusion tests. Cem. Concr. Res. 31 [10], 1411–1420. http://dx.doi.org/10.1016/S0008-8846(01)00562-2

31. Spanish recommendations for the management of dredged material in the Spanish harbours. (1994) Centro de Estudios y Experimentación de Obras Públicas, Puertos del Estado, Madrid.

32. Casado-Martinez, M.C.; Buceta, J.L.; Belzunce, M.J.; Delvalls, T.A. (2006) Using sediment quality guidelines for dredged material management in commercial ports from Spain. Environment International 32, 388–396. http://dx.doi.org/10.1016/j.envint.2005.09.003 PMid:16289759

33. Casado-Martinez, M.C.; Buceta, J.L.; Forja, J.M.; DelValls, T.A. (2006) Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. I. Exercise description and sediment quality. Ciencias Marinas 32, 121–128.

34. Casado-Martinez, M.C.; Forja, J.M.; DelValls, T.A. (2009) A multivariate assessment of sediment contamination in dredged materials from Spanish ports. Journal of Hazardous Materials 163, 1353–1359. http://dx.doi.org/10.1016/j.jhazmat.2008.07.106 PMid:18790564

35. UNE EN 12350-2:2006. Testing fresh concrete. Part 2: Slump test.

36. UNE EN 12350-8:2011. Testing fresh concrete - Part 8: Self-compacting concrete - Slump-flow test.

37. UNE EN 12350-6:2009. Testing fresh concrete - Part 6: Density.

38. UNE EN 12350-7:2001. Testing fresh concrete - Part 7: Air content - Pressure methods.

39. UNE-EN 12390-3. Testing hardened concrete - Part 3: Compressive strength of test specimens.

40. EN 12457-2:2002 Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).

41. UNE ENV 12506 Characterization of waste. Analysis of eluates. Determination of pH, As, Cd, Cr (VI), Cu, Ni, Pb, Zn, Cl−, NO2−, SO42−.

42. ENV 13370:2001. Characterization of waste. Determination of Ammonium-N, AOX, conductivity, Hg, phenol index, TOC, CN− easily liberatable and F−.

43. UNE 89987:2009 Concrete durability. Test methods. Measurement of chloride diffusion coefficient in hardened concrete. Multiregime method.

44. UNE 83982:2008. Concrete durability. Test methods. Determination of the capillar suction in hardened concrete. Fagerlund method.

45. Spanish Code on Structural Concrete EHE-08.

Publicado

2015-09-30

Cómo citar

Rozas, F., Castillo, A., Martínez, I., & Castellote, M. (2015). Directrices para evaluar la puesta en valor de un residuo en la fabricación de un material base cemento: producción de hormigón autocompactante a partir de sedimentos dragados. Materiales De Construcción, 65(319), e057. https://doi.org/10.3989/mc.2015.10613

Número

Sección

Artículos

Artículos más leídos del mismo autor/a